Aksoy New Zealand Journal of Forestry Science (2024) 54:20

https://doi.org/10.33494/nzjfs542024x328x
E-ISSN: 1179-5395

published on-line: 15/12/2024

RESEARCH ARTICLE Open Access

New Zealand Journal of Forestry Science

& SCion

FORESTS = PRODUCTS = INNOVATION

Evaluation of forest areas and land use/cover (LULC)
changes with a combination of remote sensing, intensity
analysis and CA-Markov modelling

Hasan Aksoy

Sinop University, Vocational School of Ayancik, Department of Forestry, Program of Forestry and Forest Products, Sinop, Ttirkiye

*Corresponding author: haksoy@sinop.edu.tr

(Received for publication 20 August 2023; accepted in revised form 25 November 2024)
Editor: Euan G. Mason

Abstract

Background: Land use and land cover change (LULC) is crucial for maintaining the integrity of ecosystems’ structure and
function, and thus regular measurement and monitoring of LULC are necessary.

Methods: In this study, the temporal and spatial changes in forest areas and land cover in the province of Sinop, located
in the north of Turkey, were analysed by intensity analysis for two 10-year periods from 2002-2012 to 2022, and 2032
and 2042 forecast LULC maps were generated using the cellular automata CA-Markov model. In the study, datasets were
prepared using forest type maps and Landsat images, and the images were classified using various classification techniques.

Results: The results indicated that forest areas increased by 23% (37,823.38 ha) from 2002 to 2022, with the mixed
forest category showing a decrease of 22% (12,245.43 ha) within this. In non-forest areas, a significant increase of 72%
was observed in the settlement category, while a decrease of 63% was noted in the agricultural category. According to
the intensity analysis, the rate of change in LULC is faster from 2002 to 2012 than from 2012 to 2022. In both periods,
the settlement and agricultural categories have predominantly targeted each other’s losses. According to the simulation
results of land use/cover from 2022 to 2042, a 0.50% increase in total forest area, a 2.87% increase in settlements, and a
decrease of 2.65% and 0.71% in agriculture and water classes, respectively, are anticipated.

Conclusions: The overall results suggest that it can contribute to setting an appropriate development goal, especially for
forest planners and policymakers, to regulate land use changes to achieve higher carbon stocks and maintain balance in

global climate scenarios.
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Introduction

Humanity has explored and benefited from various
ecosystems since its existence, leading to significant
changes in land-use/land-cover change (LULC) in
different scales and forms up to the present day (Bewket
& Abebe 2013; Hishe et al. 2020). Land change is widely
recognized as a major factor influencing the world’s
ecosystems and climate (Pellikka et al. 2018; Das et al.
2021). Land use and land cover change are estimated to
have caused 12.5% of all anthropogenic carbon dioxide
emissions from 1990 to 2010 (Houghton et al. 2012;
Das et al. 2021). Terrestrial ecosystems are the most
important ecosystems in terms of carbon sequestration

capacity. In particular, the sustainability of the services
provided by terrestrial forest ecosystems is very
important. Environmental problems, especially global
warming, threaten the lives of living things, and their
effects are felt intensely all over the world. Land use and
land cover changes (LULC) are one of the most current
and worrying of these problems (Dewan & Yamaguchi
2009; Halmy et al. 2015; Zheng et al. 2015; Karimi et
al. 2018), which are caused by the mutual interaction
of natural processes and human influence (Agarwal
2002; Zadbagher et al. 2018). Many factors influence
the LULC process, including ecological, socioeconomic,
and political conditions, land planning systems, and
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environmental impacts (Mayes et al. 2014; Nasiri et
al. 2019). LULC changes are often linked to human
intervention (Achmad et al. 2015), agricultural needs
(Santer et al. 2000; Cammerer et al. 2013; Li et al.
2013; John et al. 2020), natural disasters (Dubovyk et
al. 2011), economic and urban developments (Khan et
al. 2015; Rimal et al. 2019) due to population growth.
Uncontrolled and unplanned LULC change can lead
to many negative consequences such as ecosystem
integrity, natural resource consumption, reduction of
biological diversity, extinction of species, and climate
change (Lopez-Moreno et al. 2014; Peralta-Rivero et
al. 2014; Huang et al. 2015; Nasiri et al. 2019). People
are migrating from the countryside to the city due to
the increased availability of opportunities and facilities
such as employment, education, health, and other
recreational activities (Hasan et al. 2020). Therefore,
especially developing countries are faced with habitat
fragmentation, conversion of forests to agriculture and
urban structures, and deforestation (Sahana et al. 2016;
Ghosh & Porchelvan 2017; Hermhuk et al. 2020). To
determine where, when, and at what rate LULC change
occurs, these changes need to be continuously monitored
and evaluated at different spatial and temporal scales
(Mengistu & Salami 2007; Kumar et al. 2016; Singh et
al. 2022). So, regional mapping of LULC, detecting the
rate and transition between variables, and revealing
future changes is essential for more sustainable land
use (Mengistu & Salami 2007; Kafi et al. 2014; Alipbeki
et al. 2020). All the topics and information mentioned
above illustrate the importance of rapidly and reliably
delineating LULC.

The fact that LULC is difficult to monitor with
traditional methods and data acquisition has led
researchers to different data sources and using remote
sensing data as an alternative; the most effective data
source. The integration of remote sensing (RS) and
geographic information systems (GIS) is widely used in
different parts of the world to investigate the extent of
natural ecosystems and resources, their changes over
time, and the speed of change (Dong et al. 2009; Santillan
et al. 2011; Mallupattu & Sreenivasula Reddy 2013; Liu
et al. 2014; Yagoub & Al Bizreh 2014; Abino et al. 2015).
RS and GIS are recognised as some of the most effective
tools for monitoring LULC (Deep & Saklani 2014; John
etal. 2020). In recent years, various spatial models have
been developed to make it easier to study, model, and
manage the LULC transformation process. Such models
provide flexible and innovative possibilities that simplify
the complex web of LULC transformations, contributing
to informed decision-making and effective land
management (Parker etal. 2003; Rubio etal. 2012; Aksoy
& Kaptan 2021). Various modelling tools and techniques
are used to spatially study and analyse the LULC process
and predict future LULC change. The most widely used of
these is the Cellular Automaton (CA Markov) chain (Isik
et al. 2013; Basse et al. 2014; Qiang & Lam 2015; Nasiri
et al. 2019). CA Markov is a statistical tool that uses a
neighbourhood-based transition probability matrix in
the spatial algorithm (Nouri et al. 2014). It is generally
used to analyse losses and gains as percentages and
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probabilities of each type of land use that transforms
within a certain period (Huang et al. 2008).

In recent years, many studies have been reported in
the literature for the detection of LULC with RS data.
Beroho et al. (2023) generated future land use/land
cover (LULC) scenarios in the Mediterranean basin of
Morocco using CA-Markov. Weslati etal. (2023) examined
the modelling and evaluation of spatiotemporal changes
in future land use change scenarios using remote
sensing and the CA-Markov model in the Mellegue basin.
Mathewos et al. (2022) created future predictions using
the CA-Markov model by evaluating land use and land
cover changes in the Rift Valley basin. Almirén et al.
(2022), the impact of land use and climate change on
species in South American forests. Researchers such
as Gasirabo et al. (2023), Daba et al. (2022), Jana et al.
(2022), and Khwarahm et al. (2021) have investigated
future simulations wusing the CA-Markov model.
To monitor and analyse LULC, it is necessary to calculate
change matrices by overlaying the land use bases of
different time points of a region. However, the direct
interpretation of these matrices is insufficient to explain
the processes and reasons for change (Huang et al. 2012,
Kaptan 2021). Intensity analysis developed by Aldwaik
and Pontius (2012) is used to eliminate or minimise
this deficiency and to better interpret the processes and
causes of changes in land use classes. Intensity analysis,
which has become popular recently, is also frequently
used by researchers to interpret the net changes between
land classes.

The importance of assessing and monitoring LULC
has focused Turkish researchers on this topic. However,
many studies conducted in our country have focused
regionally on determining the areal changes in land use
classes, which is the most well-known aspect of LULC
change. Only a few studies have focused on understanding
which land use classes influence or target changes in
other land use classes during land-use transitions. In
this study, it was aimed to determine the interactions of
land use classes with each other and the rate of change
by using intensity analysis and to create future land
use class maps with the CA-Markov model. In the study,
forest cover types maps of 2002, 2012, and 2022 and
Landsat satellite images were used. The relevant dates
were selected because digital forest type maps were
used to determine the land use classes for the analysis.
The overall aim was to investigate the land use/land
cover (LULC) changes between 2002, 2012, and 2022
using intensity analysis and to predict land use classes
for the years 2032-2042. Another objective of the study
is to provide specific information for the management,
planning, rehabilitation, and policy approaches of
forests, which are one of the natural ecosystems in
Turkey, by revealing which land use class each land use
class has changed and has the potential to change by
targeting which land use class and by developing future
scenarios based on this. The outputs of the study provide
invaluable information to conservation ecologists, urban
planners, and decision-makers to protect the integrity
of ecosystems, as well as a basis for future simulations,
measures, and planning for the region.
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Methods

Study area, satellite images and land use data

The study was carried out in the province of Sinop,
located in the northernmost part of Turkey (Figure
1). The study area is located between 34° 10’ 26"
and 35° 30’ 06" E longitude and, 42° 05’ 30" and
41° 20' 30" N latitude. The study area is bordered by
Corum in the south, Samsun in the east, and Kastamonu
province in the west. The study area consists of a total
area of 556,275.50 hectares (ha), with forests covering
66.41% (369,466.00 ha) of the study area. The Pinus
nigra, Pinus sylvestris, Fagus orientalis, Carpinus betulus,
Abies nordmanniana, Quercus infectoria, Quercus
frainetto, Quercus cerris, Quercus petraea, Quercus robur,
Juniperus sp., Fraxinus excelsior, Ulmus L., Sp. and Populus
tremula are the most common tree species in the Sinop.
Summers are warm in the study region, which has a Black
Sea climate, while winters are cool. The mean annual
precipitation is 685.7 mm, with the most precipitation in
October and the least in May (GDF 2022).

Landsat satellite images constitute the general basis
of the study. Landsat satellite images of the study area
for the years 2002, 2012, and 2022 were obtained from
the official page of the United States Geological Survey
(USGS 2022). In the study, satellite images in the same
season and without clouds (<10%) were preferred to
perform the image classification process at the highest
level of accuracy. The features of the satellite images
used are given in Table 1.
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In the study, reference data (regions of interest
(ROIs)) for the classification (training) and accuracy
assessment (testing) of Landsat images were created
based on the digital forest types maps of the study area
(2002, 2012, and 2022). 50% of the pixel-based regions
of interest (ROI) for each land use class were used for
classification (training) and 50% were used for accuracy
(testing) evaluation. These maps were obtained from the
Sinop Regional Directorate of Forestry. The main reason
for choosing the dates in the study is that the forest type
maps for the study area were updated and revised in
those years. These maps are generated based on very-
high-resolution digital optical images, and field surveys.
During this process, each stand type (including non-
forest LULCs) is first delineated on the 30-cm colour-
infrared stereo aerial photographs taken by the General
Command of Mapping of Turkey. Then, stand type codes
are assigned to the delineated polygons with 3D visual
inspection in the Turkish Forestry Service (GDF)’s
headquarters office in Ankara. In the next step, draft
stand-types maps are sent to the forest professionals who
perform forest inventory surveys in respective PUs. The
draft maps are spatially and thematically corrected after
field observations and ground measurements conducted
in hundreds of forest sample plots. Thus, the final stand-
types maps are generated at the PU (landscape) level.
These maps are periodically updated in Turkey as forest
management plans are generally renewed at 10- or
20-year intervals (Aksoy & Kaptan, 2021). Six land use
classes were determined on forest type maps and made
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FIGURE 1: The location of the study area in the world and in Tiirkiye.
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TABLE 1: Landsat satellite features (https://earthexplorer.usgs.gov/).

Satellite Date Acquired Path Row Spectral Wavelength (um) Spatial Resolution
Range Landsat ETM Landsatg oLl (M)
Landsat 7 29.06.2002 176 31 Band 1 0.45-0.51 0.43 - 0.45 30
ETM+ 28.06.2012 Band2  053-0.61  0.45-0.51 30
Landsat 8 01.09.2022 Band 3 0.63-0.69 0.53-0.59 30
OLI/TIRS Band 4 0.75-0.90 0.64 - 0.67 30
Band 5 1.55-1.75 0.85-0.88 30
Band 6 10.4-125 1.57 - 1.65 30
Band 7 1.09-2.35 2.11-2.29 30
Band 8 0.52-0.90 0.50-0.68 15

ready for analysis. The land use classes used in the study,
along with their main and subcategories, are shown in
Table 2.

General methodology of the study

In the study, Landsat-7 ETM + for 2002 and 2012, and
Landsat-8 OLI images for 2022 were classified by
supervised classification method, concerning forest type
maps of the area. Maximume-likelihood classification
(MLC), Support-vector machine (SVM), and Random-
forest (RF) methods were used in the supervised
classification process. ENVI version 5.3 software was
used for classification and accuracy analysis. The
Cellular Automata-Markov (CA-Markov) model has been
constructed using transition probability matrices for the
periods 2002-2012, 2012-2022, and 2002-2022, along

TABLE 2: Land use classes.

with simulation maps for 2022, 2032, and 2042. The
modelling accuracy was verified using Kappa statistics
and F1-Score values, employing Regions of Interest
(ROIs) prepared for the classification of the 2022 Land
Use Land Cover (LULC) map. After checking the accuracy
of the model, land use simulation maps of the study area
were produced for the years 2032 and 2042. The general
methodological flow of the study is shown in Figure 2.

Satellite image pre-processing and classification
approaches

Atmospheric correction was applied to the Landsat
satellite images used in the study. To distinguish land
use classes with maximum accuracy, satellite images
with 1% standard deviation geometric correction were
made. In satellite images, some systematic errors may

Class
Coniferous Forest Mixed Forest (MF) Broad-leaved Settlement (St) Agriculture Water (Wt)
(CF) Forest (BLF) (Ag)
Pure Crimean pine Scots pine & Nordmann’s Sycamore City Centre Cultivated Lake
fir Land
Scots pine Beech & Nordmann's fir  Oak District Centre Uncultivated Barrage
Land
Maritime pine Beech & Scots Beech Village Centre Forest, River
Treeless
%‘ Nordmann’s fir Nordmann’s fir & Hornbeam Rural Settlement Garden
= Hornbeam
)
g Gall Pure Crimean pine & Maple
@ Beech
©  Common box Calabrian pine & Oak Ash-tree
Cypress Nordmann’s fir & Pure Plane tree
Crimean Pine
Calabrian pine Beech & Nordmann’s fir ~ Poplar
& Oak
Alder trees
Chestnut

Lime tree
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FIGURE 2: Flowchart showing the methodology of the study.

occur radiometrically in the image brightness values
depending on the weather conditions at the time the
image is taken, the position of the sun, the cloudiness
rate, the sensor, the wavelength of the reflection,
atmospheric and topographic effects. To minimise the
lines in the study, the radiometric errors in the images
were corrected with ENVI software so that the root
mean square error (RMSE) was less than one pixel.
Then, a band combination process was performed on
the images of each year (2002, 2012, 2022). Bands 5,
4, and 3 were used for Landsat 7 ETM, bands 6, 5, and
4 in combination were used for Landsat 8 OLI, and
the composite image was clipped to the study area.
Classification success is directly proportional to the
quality and clarity of the images used. For this reason,
images were made ready for classification by applying
image enrichment (Pan Sharpening) to increase the
perceptibility, interpretability, quality, and qualification
of the images.

Atotal of six land use classes were defined in the study
from the forest area class; coniferous, broad-leaved, and
mixed forest, and from the non-forest lands; settlement,
agriculture, and water. The reference pixels (ROI)
required for the classification process were determined
according to the intensity and distribution of the classes
in the field, using forest type maps for 2002, 2012, and
2022, GPS data of terrestrial measurements, and Google
Earth images. Snedecor and Cochran’s (1969) methods

were used to determine the minimum number of sample
pixels in the reference pixels taken (Equation 1). The
minimum number of reference pixels for each class was
set to 204 for 85% accuracy and a 5% maximum error
rate.
N=4pq / E 1)
Where N is the total number of pixels to sample; p is the
expected percent accuracy; q equals 100-p; and E is the
maximum allowable percentage of error:

In the study, three supervised classification methods
were used. The first of these was the MLC method,
which is a statistical-based classification method that
takes into account the mean-variance and covariance
values. In MLC, probability intensity functions at the
classification stage are calculated and the pixels to be
classified are assigned to a higher class. The second
one was the SVM method based on the structural risk
minimisation principle and statistical learning theory.
In SVM, the goal is to obtain optimal hyper-level classes.
With the distance between the resulting hyper-level
and support vectors, the most stable class function
maximised is generated (Kulkarni & Lowe 2016; Gilinli
2021). In the third technique, the RF method, a random
subset is sampled (classes) by giving a training set, and a
decision tree pattern is created for similar classes. After
these repetitive patterns are terminated, the image is
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classified using the decision tree pattern that provides
the greatest similarity for the classes (Kulkarni and
Lowe 2016).

The classification accuracy of the images classified
by each method was checked with Kappa statistics and
F1-Score. Kappa in statistics; overall accuracy indicates
how well the obtained classification result matches the
actual situation in the field, and the producer’s accuracy
indicates how well each class is classified with sample
pixels. User’s accuracy, on the other hand, shows how
many of the pixels of the user’s real situation in the terrain
are correctly represented on the classified map. Finally,
the Kappa coefficient (k) shows the actual consistency
between the reference data and the classified map
(Congalton & Gren 2019; Aksoy & Kaptan 2021). In F1-
Score, Precision refers to the ratio of correctly classified
pixels to the sum of false and negative pixels. Recall, on
the other hand, is expressed as the ratio of correctly
classified pixels to all pixels. Finally, the F1-Score is an
evaluation criterion expressed with the harmonic mean
of Precision and Recall (Yacouby & Axman 2020).

Intensity analysis

Intensity analysis, developed by Aldwaik and Pontius
(2012), calculates the transitions between categories in
terms of size and intensity, at three different levels: time
interval, category level, and transition level. To perform
the analysis, land change matrix tables of the study
periods should be created. Because in intensity analysis,
the amount of variation between categories in the time
intervals of the study constitutes the input data. The basic
rationale for the analysis is to compare changes across
the entire temporal and spatial extent with uniform
intensity, which assumes that their intensities are evenly
distributed (Aldwaik & Pontius Jr 2012; Anteneh et al.
2018; Kaptan 2021).

Time-interval intensity analysis compares the size
and rate of change for each time interval with uniform
intensity, which is calculated as the rate of change for
the entire working period. If the annual change intensity
(S,) value obtained according to the calculation made
according to Equation 2 for each time interval is higher
than the uniform intensity (U) value calculated according
to Equation 3, then the rate of change is interpreted as
high for the relevant time interval, and low if it is less
(Aldwaik & Pontius 2012; Kaptan 2021).

(area of change during interval [Y;, Y;.;]) / (area of study region
s = g g yreg %

¢ duration of interval [, Y;.1] 100
(2)
o = {Zﬁ:l[(Z{:lcﬂl)[; Ct//]}/][z:i:l( xI:LCtU)] x 100%
t+1 — It
U- (area of change during all intervals) /(area of study region) % 100
h duration of all intervals
(3)

e {Eal(Bes Cowy) = Cos B/ [j2(Bhe Cey)]

o =
° [Yr— Yi]

X 100%
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Where |/ = number of categories; i = index for a
category at an initial time; j = index for a category at a
subsequent time; T = number of time points; ¢t = index
for a time point, which ranges from 1to T - 1; Y, = year at
time point t; Ct, = number of pixels that transition from
category i at time Y, to category j attime V..

The category level examines how the gross gains
(Equation 4) and gross losses (Equation 5) of each
category at each time interval vary between categories,
in terms of size and intensity (Huang et al. 2012). The
analysis compares the annual gain intensity (G,) and loss
intensity (L,) of each category with the annual change
intensity (S) calculated according to Equation 2 for
the relevant period. In this way, it is determined which
category is active or dormant in terms of loss and gain
during the time interval.

_ (area of gross gain of category j during [Y,, Y;.1]) / (duration of [Y;, Y;..])

100
o area of category j at time Y;.; x
(4)
J
% = [(21=1 Cn]) _Icru ] / (Ym — yt) x 100%
E;:l Cn/
Lo (area of gross loss of category i during [Y;, Yz.;]) / (duration of [V;, Y..;]) % 100
" area of ategory i at time Y;
(5)

_[a6) — ]/ (s = 1)

%
J
Z]:l Ceij

% 100%

The transition level examines the gross gains of each
category in each time period from which categories’
gross losses are derived from the transitions. The
analysis for this gives the annual transition intensity
(R,,) observed from category i to category n during the
time interval according to the size of category i in the
starting year (Y,) of the relevant time interval, according
to Equation 6. The R value is compared to the annual
uniform transition intensity (W) calculated according to
Equation 7 and based on the assumption that category n
acquires evenly across the entire landscape. If R, < W,
is small, category i losses in time interval ¢t mean that
category n avoids targeting as gain, if R, > W _is large,

category n is targeted as gain (Kaptan 2021).

_ (area of transition from i to n during [Y; Y:..]) / (duration of [Y, Y:.1]) % 100
B area of category i at time Y;
(6)

tin

oo Con [ (a =) 0

¥y Gy

_ (area of gross gain of category n during [Y,, Y;.,]) / (duration of [V}, Y.1])

w;
area that is not category n at time Y;

tn

X 100

[(Zi Ciin) = Cenn ] / (Yer = Y) ) (7)
Ef:x[(zqu Cru) - Ctru] X 100%

o =
Scenario modelling (Cellular Automaton-Markov
model) and validation

A Markov chain is a model that makes predictions using
the probability of transition from the current state to the
next state (Guan et al. 2008). This model includes the
logic of simulating the next period depending on the state
of the previous period, using the inter-period change-
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transition probability matrix (Wang & Murayama 2017;
Aksoy & Kaptan 2022). In this study, a land use model
at a given time is equivalent to a state of the Markov
process, and the area varying between land use models
is the ratio of state transition probability. Equation 8
shows the Markov estimate (Huang et al. 2020).

Z(1+1) = Z{ xQ (8)
Where Zu+1), represents the LULC state at time [+1,
whereas Z represents the LULC state. Time Q represents
the probability matrix of transition from time [ to time
slot [+1.

Z=12,2,2,2,2,7] (9)
Z (i=1, 2, ... , 6) indicates coniferous forest, leafy
forest, mixed forest, residential area, agriculture, and
water bodies usage areas, respectively (Equation 9),
Q can be defined as a [n, n] matrix below (Equation 10).
Here, n refers to the total number of land use patterns,
Q, = probability of transition from i to j in the land use
pattern, while it also states that the sum of each row of
the matrix should be equal to 1.

Qll le an
Q = Qf* sz Qf" ,Z("]:“Q,, =11<ij<snn=6 (10)
Qni Qn2 = Qun

Astandard CAmodelis divided into four features: discrete
cellular (D), finite state (S), neighbour (L), and rules (R).
According to a particular transformation function, the
next state cell is determined by the current state and its
neighbour. The four directions can be defined as:

CA=(D,S L, R) (11)

Where CA, D, S, L, and R parameters are defined as the
Cellular Automata system, size of any positive integer,
discrete state, neighbourhood, and rules, respectively
(Equation 11). In particular, L is as follows (Equation
12);

L=(5,5,S,,5),S €S
Here n is the number of neighbours (Huang et al. 2020).

In the current study, LULC scenarios (2022, 2032,
2042) were carried out using Cellular Automata (CA)
and Markov chain analysis modelling. The period used
in the Cellular Automaton/Markov chain change analysis
was then used as the starting point for the LULC change
simulation (the year 2022). Cellular Automaton iteration
count and a standard 5 x 5 contiguous filter were
applied based on the number of times it took for forward
projection specified in Markov chain analysis.
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Results

Classification and accuracy assessment

The LULC maps of the study area were classified as
supervised by three different classification methods by
reference to 2002, 2012, and 2022 forest type maps.
Images of the most successful classification method
for each year were used for analysis. The accuracy
values and error matrix of three different classification
techniques for each period are shown in Tables 3A, B & C.

The most successful classification for 2002 was
obtained by the Maximum Likelihood Classification
(MLC) method (Kappa =0.88, F1-Score = 0.86), Table 3A.
Overall Accuracy was found as 0.94 for the 2002 LULC
map. The results of the three classification methods
show that the classification is successful and that the
ability to represent the field of study is high. In the
analysis, the LULC map obtained with the 2002 MLC
method was used.

The highest success in the classification for 2012 was
obtained in the MLC method as in 2002 (Kappa = 0.78,
F1-Score = 0.83), Table 3B. Overall Accuracy was found as
0.83. The highest F1-Score values (280%), respectively;
Water, Coniferous Forest, Broad-Leaved Forest, and
Agriculture classes. The precision value was over 80%
in all classes except for Mixed Forest and Agriculture
classes (Table 3B). Finally, the classification accuracy
values and error matrix for 2022 are shown in Table 3C.
As in the other two periods, the most successful LULC of
2022 was obtained from the MLC method (Kappa = 0.81,
F1-Score = 0.86). Overall Accuracy was found as 0.86. F1-
Score values also show that high (280%) classification
achievements have been achieved for all classes.

The most successful classification of 2002, 2012, and
2022 was obtained in the MLC method for each year. In
all periods, after MLC, the most successful method was
found to be SVM and REF, respectively. A Kappa coefficient
of <0 means there is no fit, 0-0.2 a slight fit, 0.2-0.41
an average fit, 0.41-0.60 a moderate to intermediate
level of fit, 0.60-0.80 a significant fit, and 0.81-1.0 a
perfect fit. (Patekar et al. 2013). When the methods of
all classifications are evaluated, the Kappa and F1-Score
being above 70% indicate that all the methods used in
the study can be used in the classification at moderate
and significant levels. The LULC maps produced by the
MLC method for each year are shown in Figure 3. In
the classification, a total of six land use classes were
determined as Coniferous Forest (CF), Mixed Forest
(MF), Broad-Leaved Forest (BLF), Settlement (St)
Agriculture (Ag), Water (Wt). It was determined that
proportionally large changes occurred in water and
settlement classes. The part where the row and column
of the same class overlap, which is expressed in bold in
the error matrices for all periods, represents the number
of correctly classified pixels of the relevant class. In
Figure 3, it is seen that the ratio of area to the number
of representative pixels selected (Table 4) is directly
proportional.
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FIGURE 3: LULC maps of classified images of the study area for three years (2002, 2012, and 2022).

Land change for the years 2002, 2012 and 2022

The changes at the end of the years of the LULC
categories are shown in real and percentage terms in
Table 5 and visually in Figure 3. The results show that
only mixed forest decreased by 22% in the forest area
class in 2002-2022, while coniferous- and broad-leaved
forests increased by 20% and 22% respectively. Only one
category of non-forest area was found to have increased.
This category is Settlement, which has a remarkably
high value of 72%, whereas agriculture and water have
continued to decrease over the years.

Although settlements have increased and mixed-
forest areas have decreased, increases in coniferous and
broad-leaved forest have contributed to an increase of
37,823.38ha (12.91%) in forest areas from 2002 to 2022.
It is precisely at this point that looking at the results of
the intensity analysis, which is the main subject of the
study, and making evaluations will contribute to more
consistent results and interpretations.

Intensity analysis
Interval level
According to the land use change matrix for the 2002-
2012 and 2012-2022 time periods, the total amount of
land-use change in each period, annual change intensity,
and intensity of change are shown in Figure 4.

The bars at the top of the graph show the intensity
of the observed changes, and each bar at the bottom
shows the percentage of change level experienced in

the time intervals. The fact that the 2002-2012 period
bar (annual change rate 4.15%) at the top is above the
uniform line (3.92%) indicates that the rate of land use
change is fast in this period, while the 2012-2022 period
bar (annual rate of change 3.69%) is below the uniform
line, shows that the rate of change is slow in this period.
If both bars were together above the uniform line, it
would mean that the annual changes in categories were
constant over the entire temporal scope.

Category level

According to the basic logic of intensity analysis,
comparisons are made according to the uniform intensity,
which expresses the assumption that the intensities of
the changes experienced throughout the entire temporal
and spatial scope are equally distributed. If the bar of a
category goes above the uniform line, it means that the
gain or loss intensity for the relevant category is more
intense (active) compared to the general working area, if
it ends before it reaches the uniform line, it is dormant,
that is, it is less dense than the overall work area.

The results of the category level of the intensity
analysis showing the annual area changes and the
change intensities of each category in terms of gross loss
and gross gain in each period are given in Figure 5. The
top side of the graph shows the intensity of change in
gains and losses for each category, and the bottom side
shows only the variation of annual observed gains and
losses in the area.
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TABLE 4: LULC transition probabilities matrix for the 2002-2022 periods of the study area.

Transitional probabilities matrices for LULC (ha) of the Sinop Forest for the period 2002 - 2022

Class’ 2002- 2012
CF MF BLF st Ag Wt
CF 0.7187 0.0297 0.0501 0.0445 0.1439 0013
MF 0.1658 03125 0.4851 0.0126 00229  0.0011
BLF 0.0495 0.1171 0.685 0.0153 0.1324  0.0007
st 0.1541 0.0181 0.0212 0.2908 0.5015  0.0143
Ag 0.0834 0.0423 0.1397 0.1268 0.5983  0.0094
0 0.3152 0.0209 0.0111 0.1157 02721  0.265
CClasst T 2012-2022
CF MF BLF st Ag Wt
CF 0.6007 0.0851 0.0827 0.0745 0.1506  0.0064
MF 0.4353 0.2319 0.1511 0.049 0131 00018
BLF 0.1582 0.1549 0.5601 0.0121 0.1145  0.0001
st 0.0564 0.0081 0.0902 0.4008 04392 0.0054
Ag 0.0327 0.0107 0.282 0.1188 0.5523  0.0034
0 0.1377 0.0068 0.0181 0.1332 02642  0.44
Cclass* " 2002-2022
CF MF BLF st Ag [
CF 0.5533 0.0572 0.1178 0.0881 0175  0.0086
MF 0.4165 0.2802 0.2387 0.0345 0.0293  0.0009
BLF 0.1863 0.1416 0.5577 0.0199 0.0943  0.0001
st 0.1088 0.0058 0.181 0.2738 04231  0.0074
Ag 0.0701 0.0239 0.2513 0.1348 0.5148  0.0051
Wt 0.1492 0 0.0807 0.1651 04023  0.2028

1 CF = Coniferous forest; MF = Mixed forest; BLF = Broad-leaved forest; Ag = Agriculture; Wt - water. See Table 2 for details of each class

The gains of the broad-leaved forest and coniferous
forest categories, which are in the forest area class, are
higher than their losses in the first-time interval, and the
losses of the mixed forest category are higher than their
gains. In the second time interval, this situation was
exactly the opposite, while the gain of the mixed forest
category was higher than the loss, the losses observed in
the broad-leaved forest and coniferous forest categories
were higher than the gain. In the non-forest area class;
While the losses of agriculture and water categories were
higher than the gains in the 2002-2012 time period, this

situation was the opposite in the 2012-2022 time period.
On the other hand, the gain of the settlement category is
higher than the loss in both time intervals.

To better understand the transitions between
categories, it is necessary to look at the annual intensity
changes of each category. In the first time interval, broad-
leaved forest is active only in terms of gain, while mixed
forest is active in terms of both gain and loss. The mixed
forest category was the category that experienced the
most intense loss whereas coniferous forest remained
the same. In the second time interval, the broad-leaved

TABLE 5: Changes in area of land use/land cover for the period 2002-2022 (ha, %).

Class! 2002 (ha) %  2012(ha) % 2022 (ha) % 2002-2022 (+/-) +/-%
CF 104,878.30 19  120,027.45 22 126,368.71 23 21,490.41 20
MF 56,338.43 10 4496482 8 44,093 8 -12,245.43 -22
BLF  131,755.18 24 154,909.25 28 160,333.58 29 28,578.40 22

St 30,853.51 6 43966.08 8 53,21524 10 22,361.73 72

Ag 219,121.32 39 18481547 33 167,276.17 30 -51,845.15 -24
Wt 13,293.79 2 7,557.46 1 4,953.84 1 -8,339.95 -63
Total  556,240.53 100 556,240.53 100  556,240.53 100

! CF = Coniferous forest; MF = Mixed forest; BLF = Broad-leaved forest; Ag = Agriculture; Wt - water. See Table 2 for details of each class
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FIGURE 4: Interval-level intensity analysis for the time
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forest category switched to the active loser status, while
the mixed forest category remained active in terms of
both gain and loss and became a winner in the second
period. The coniferous forest category, which is dormant
in the first time interval, is active in terms of loss in the
second time interval. In the non-forest area class, the
agriculture category is dormant in terms of loss and gain
in both time periods. The settlement category is active in
both time slots in terms of losses and gains, and is also in
a heavy winner state. water category, on the other hand,
was an active loser in the first time slot, and became an
active winner in the second time slot.

Transition level

The results of the transition level analysis, which show
which categories’ gainsand losses of each category mainly
target the losses, are given in Figure 6 for the categories
included in the forest area class and Figure 7 for those in
the non-forest area class. The top of each graph shows
the intensity of annual passes, and the bottom shows the
size of annual passes. According to the analysis results,
While the broad-leaved forest category heavily targeted
the losses of the mixed forest category as gains in the
2002-2012 time period, it targeted the losses of both
the mixed forest and agriculture categories in the 2012-
2022 time period. While the gain of the coniferous forest
category targeted the losses of both mixed forest and
water categories in the first time interval, it targeted the
losses of the mixed forest category most intensely in the
second time interval. The gain of mixed forest targeted

2012-2022
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FIGURE 5: Category level showing active losing and gaining categories for time intervals.
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the losses of the broad-leaved forest and agriculture
categories in the first timeframe, and the losses of the
broad-leaved forest and partially coniferous forest
categories in the second timeframe as gains.

According to Figure 8, the results of the transition-level
analysis, show which gains in categories corresponded
with losses of each category in the non-forest area class.
While agriculture targeted water and settlement losses
as gains in the first time slot, it targeted only settlement
losses in the second time slot. Settlement both in the first
and second time slots agriculture and water aimed to
gain their losses. The water category, on the other hand,
targeted coniferous forest and settlement losses in both
timeframes, while most intensely targeted settlement
losses as gains. Especially in the second time interval, it
is seen that the water category targets coniferous forest
losses more intensely compared to the first time interval.

Markov validation and scenario modelling

In the study, the LULC map of 2022 was tried to be
estimated by calculating the transition probability
matrix from the LULC maps obtained with the 2002-
2012 classification. The LULC simulation map of 2032
was generated using LULC transition probabilities
matrix values for the period 2012-2022. 2042 LULC
simulation map was produced using the LULC transition
probabilities matrix values for the period 2002-2022
(Table 4, Figure 9).
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In the transition probabilities matrix (Table 4) the rows
show the land use class values for the previous period
and the columns show the land use class values for the
next period. Diagonal values show the probability of each
class remaining unchanged. In other words, the diagonal
part shows the resistance of the relevant class to the
transition. From these data, the most resistant classes to
transition in all periods are coniferous forest and broad-
leaved forest. It is seen that the classes most inclined
to the transition without resistance are settlement and
water. In the Intensity analysis, it was determined that
the losses and gains were realised between coniferous
forest, broad-leaved forest, settlement, and water with
the highest ratio.

Accuracy assessment of the CA-Markov model
The Markov model was checked with the estimated 2022
LULC map, Kappa, and F1-Score values with the ROIs
used in the 2022 LULC classification (Table 6). Along
with these, model performance was also checked with
Taylor diagram and dendrogram graphs (Figure 8). The
estimated 2022 LULC Kappa and F1-Score values were
calculated as 0.86 and 0.88, respectively. All performance
criteria show that the model is highly predictive, reliable,
and usable (Overall accuracy, 88.87%).

When the Taylor diagram was examined, it was
determined that it was a model with a low standard
deviationin the range 0f 0.01 to 0.02 and a high predictive
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FIGURE 9: LULC maps for the years 2022, 2032, and 2042 were produced with the Cellular Automata-Markov model.

ability with a correlation greater than 0.8. Again, in the
dendrogram, the fact that each land use class has a high
level of overlap in the area confirms the success of the
model.

Predicted 2022, 2032, and 2042 LULC

2022 LULC maps were estimated using 2002-2012
transition probabilities, 2032 LULC using 2012-2022
transition probabilities, and finally 2042 LULC map
2002-2022 transition probabilities. Predicted LULC
maps were divided into 6 classes, namely Coniferous
Forest, Mixed Forest, Broad-Leaved Forest, Settlement
Area, Agriculture, and Water, and the area amounts (ha)
of each class were determined (Table 7). In all years,
more than 50% of the entire area is made up of forest
area, while the largest distribution area after forest
belongs to the agricultural area. The Water class is the
class with the lowest area in each period.

In the 20 years (2022-2042), in the forest category:
the area of coniferous forest decreased by 1.15%
(6,417.9 ha) whereas broad-leaved, and mixed forest
area increased by 1.20% (6,701.91 ha) and 0.50%
(2,513.65 ha), respectively. Coniferous forest constituted
24.7% of the overall area in 2022 but it is estimated
that it will decrease by 0.51% to 23.56% by 2032, and
decrease to 22.92% by 2042, with a decrease of 0.64%
compared to the previous period. Broad-leaved forest
represented 29.23% of the study area in 2022 and it has
been estimated that it will represent 29.06% by 2032,
and 30.44% by 2042, with an increase of 1.38%. The
mixed forest area was projected to represent 7.79% in

2022, increasing to 8.56% in 2032, and 18.24% in 2042.

For the non-forest area, a decrease of 2.66% and
0.71% was experienced in agriculture and water classes,
respectively, while an increase of 2.86% was expected
in the settlement class in the 20 years between 2022
and 2042. The reduction of 14,787.25 ha in agriculture
is estimated to be shared among all other classes, and
the majority of this share will be shared between classes
within the forest area. It is estimated that broad-leaved
forest, mixed forest, and coniferous forest will receive
the most shares in this share, respectively. The forecasts
for 2022, 2032, and 2042 were realised with the Markov
model using the matrix of transition probabilities
between classes in previous periods (Figure 8). For
2022, the broad-leaved forest and agriculture classes
are seen as the most resilient with close similarity. For
2032, when the transition probability matrix is analysed,
mixed forest and agriculture classes are predicted to be
resistant to change with high correlation. Finally, for
the year 2042, agriculture (0.79) is predicted to be the
most resilient class, followed by mixed forest and broad-
leaved forest classes with similar correlation (Figure 10,
Table 4).

Discussion

LULC changes constitute fundamental causes of
numerous economic, ecological, and sociocultural issues.
Particularly, alterations in land cover attributed to
anthropogenic influences that can lead to deforestation
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2002 to 2012 Transition Correlation

2002 to 2022 Transition Correlation

2012 to 2022 Transition Correlation

FIGURE 10: Correlation matrix of classes for periods.

serve as a primary factor for a multitude of adverse
effects not only at the local but also at the global scale.
Accurately mapping current and past land uses is crucial
for providing reliable geographic information to model
land changes, offering dependable inputs for various
environmental models, and developing precise decision
support systems for multidisciplinary applications. In
this study, changes in six land use classes grouped under
two categories, namely forest (Coniferous, Mixed, and
Broad-leaved) and non-forest (Settlement, Agriculture,
and Water), have been examined. Additionally, the future
states of these land use classes have been predicted.
Class settlement has increased by 72% during the
20 years from 2002 to 2022.

The study findings indicate that during the
20 years from 2002 to 2022, forest areas increased by
37,823.38 hectares, while non-forest areas decreased,
excluding Class St. However, itwould be more appropriate
to focus on the intensity analysis results of the study and
which land use class changes target the losses and gains
of which land use class.

According to the interval-level results obtained
from the intensity analysis of the study, it has been
revealed that the rate of land change was faster during
the period from 2002 to 2012 compared to the period
from 2012 to 2022. According to the category-level
results of the analysis, broad-leaved forest is in an active
gaining position in the first-time interval, whereas it is
in an active losing position in the second time interval.
Although mixed forest was intensely active in terms
of losses during the first period, it is intensely active
in terms of gains during the second period. When our
study results for the forested area are compared with
the LULC studies of Moniruzzaman et al. (2020), Xie
et al. (2021), Daba et al. (2022), it is seen that there is
no similarity. In the relevant studies, contrary to our

results, they identified a decrease in forested areas. It
is believed that the main reason for this discrepancy
stems from ecological, economic, demographic, and
social structures, as well as local and regional variations.
Because, the mentioned studies were conducted in areas
characterised by dense and rapidly growing populations,
along with industrialisation.

The regions where these studies were conducted
differ from our study area in terms of population needs
and requirements. In a region where industrialisation
is advanced in our country, LULC was studied by
Kadiogullar et al. (2014), and the results indicated a
decrease in forested areas. These differences in results
suggest that LULC is influenced by many factors.
Yilmaz et al. (2019) and Xie et al. (2021) have argued
that LULC changes are influenced by the expansion
of wurban and agricultural areas, deforestation,
destruction of wetlands, acceleration of urbanisation,
and meteorological conditions. Indeed, this statement
supports our understanding of the influence of various
factors on LULC. Similar to the results of our study,
Aksoy and Kaptan (2021) have found in their study
conducted in the northern region of Turkey that forest
areas increased by 15.4% while agricultural areas
decreased by 32.3% from 2000 to 2020. It can be said
that several factors have contributed to the increase in
forest areas in the study area. One of these factors can
be attributed to the intense migration from rural areas
to urban areas, leading to the abandonment of cultivated
lands and their gradual forestation over time. This
coincides with the increase in forest areas and decrease
in agriculture class in our study. At the same time, this
situation also explains the increase observed in the
settlement class (Table 5). Additionally, Castillo et al.
(2018) and Ettehadi et al. (2022) have emphasised that
the abandonment of agricultural lands and the decrease
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in rural populations are significant issues worldwide.
In fact, the results of his research indicate that between
2015 and 2030, around 11% of agricultural land in
the European Union will be at high potential risk of
abandonment. Rodriguez-Soler et al. (2020) emphasised
that the decrease in rural population significantly affects
both demographics and land use. The data from the
Turkish Statistical Institute (TUIK) indicates that in
Turkey, approximately 35.1% of the population resided
in villages and small towns in the year 2000, whereas
the current figure shows that only 7.7% reside in rural
areas. Again, TUIK data shows that the agricultural areas
of our country have decreased by 8% in the last 20 years
(TUIK 2020). Bayar (2018) conducted a study where it
was observed that although agricultural lands increased
due to various reasons such as the introduction of
agricultural tractors between 1949 and 1980, there
has been a tendency to decrease in agricultural lands
especially after 1980. All this information supports
that the increase in forest areas can be attributed to
migration from rural to urban areas. Another significant
factor contributing to the increase in forested areas is
the success of the forestry and afforestation activities
carried out by the Directorate General of Forestry (GDF)
in line with its mission and objectives from the past to the
present (GDF 2022). Especially after 2006, in line with
its forestry mission, the Directorate General of Forestry
has accelerated afforestation and rehabilitation efforts,
which it continues to pursue to this day. According to the
2020 report by the Food and Agriculture Organization
of the United Nations (FAO), Turkey ranked 6th among
the top 10 countries with the highest annual net forest
gain during the period of 2010-2020 (FAO 2020; Kaptan
2021). This situation supports both the afforestation
efforts by the Directorate General of Forestry and the
observation in our study that the rate of land change was
faster from 2002 to 2012 compared to 2012-2022. All
these approaches additionally support the increase in
settlement areas and the finding from intensity analysis
that the increase in settlement targets the agriculture

class.

Another variable in the study is the water class. It is
observed that the water class decreased by 63% during
the 20 years of change (Table 5). It is considered that the
most influential factor in the change in the water class
in the study area is the effects of global climate change.
Because the study area experiences annual rainfall
amounts that are not evenly distributed throughout
the year but occur in sudden and torrential forms. This
situation makes it difficult for rainfall to be captured
by forests and other vegetation or surface areas and
infiltrate to replenish groundwater. Consequently, water
sources such as rivers, lakes, and reservoirs cannot be
replenished, and rainwater is transported to the seas
through surface runoff. The closest and most significant
evidence of this situation is the flood disaster that
occurred in the study area in 2021. It was reported that
on the day of the flood disaster, 240 kilograms of rainfall
per square meter fell within 24 hours (TMS, 2021).
Aksoy (2023) in a study titled “Flood Risk Analysis
with AHP and the Role of Forests in Natural Flood
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Management: A Case Study from the North of Turkey”
observed that land use patterns have the highest impact
on flood disaster prediction. In a study conducted
by Cicek and Duman (2017), it was found that in the
northern regions of our country, except for summer,
there is an increasing trend in rainfall, and it occurs
suddenly. Zhang et al. (2016) stated that LULC changes
in ecosystems reduce infiltration capacity, thereby
indicating an increase in surface runoff and depletion of
groundwater. All this shows that freshwater ecosystems
are under threat in our country and that it is urgent to
develop the necessary measures and policies. It has
been emphasised that freshwater ecosystems are one
of the most threatened ecosystems on the planet, facing
pressures from both human and environmental factors
(Kalacska et al. 2017). Hua (2017) stated that river
water quality is adversely affected by rapid urbanisation.
This situation also supports the notion in our study that
the increase in the settlement class targets the decrease
in the water class. The results of a study conducted by
Saddique et al. (2020) have shown that LULC changes
are one of the primary drivers of hydrological changes in
the watershed. Additionally, they emphasised that LULC
change is a complex pressure source threatening the
sustainability and management of water resources. The
future scenarios for the study area indicate an increase in
forest and settlement areas, while water and agricultural
areas are expected to decrease. Some studies have
exhibited results similar to ours (Bovida-Portugal et al.
2016; Rimal et al. 2018; Aydin & Eker 2022). Another
study conducted by TUIK indicates that Turkey’s total
population will exceed 100 million in the 2040s (TUIK
2017). This situation also supports the trend observed
in our results, indicating an increase in future settlement
areas and a decrease in water and agricultural areas.
The increase in forest areas will play a positive role in
mitigating global climate change. However, specific
and proactive measures need to be taken to address
the increase in settlement areas and the decrease in
agricultural and water areas. The results of the study
have shown that it provides important information for
forecasters, policy makers, and forest managers now and
for future planning.

Conclusions

Intensity analysis provided an opportunity to examine
variation across categories for the study area and helped
to explain the reasons behind the variation. Forest
areas were seen to increase from 2002 to 2022. The
overall rate of land change in the study area was faster
in the 2002-2012 time period. It was observed that the
successful forestry activities carried out by the state as
of 2006 and the migration from rural to urban areas in
the region had a common effect on this rapid change.
Increasing forest areas are the result of afforestation
efforts and the forestation of agricultural lands left
vacant due to migration. Declining populations have not
only contributed to reforestation but have also reduced
social pressure on existing forest areas, slowing forest
degradation considerably.
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The most striking result for the study area is the
decrease in mixed forest areas over the years. It is known
that mixed forests provide great advantages, especially
in terms of biodiversity, forest fires, forest pests, forest
products, services, and functions. For this reason, in
technical forestry activities such as rejuvenation and
maintenance to be carried out in mixed forest areas, it is
essential to choose the most accurate calendar and the
most appropriate techniques by the characteristics of the
species. Many reasons are thought to be responsible for
the decline of related stand establishments. One of them
is that the benefits and functions that local people expect
from forests have changed over time. Another one can
be defined as the change in expectations of the timber
needs of the country. Finally, errors in forestry works
that can be made possible and fires occurring in the
current period time are seen as possible. In light of the
decline in mixed forest, the greatest measure to be taken
to improve this situation is to carry out afforestation
activities in the form of mixed forests. It is also important
to take the necessary measures against diminishing
agricultural land to secure a sustainable food supply. For
this reason, decision-makers and policy-makers in terms
of both forestry and agriculture should determine their
decisions and policies most accurately, starting from
the local level to the regions and from the regions to the
whole country. For this reason, LULC changes should
be addressed with analyses that can provide more
detailed information such as intensity analysis instead of
classical land change matrices, and focus on the causes
and consequences of the changes.

Overall, the results of this study showed that the
integration of RS, GIS, and simulation models can be used
to monitor, predict, map, and report changes in LULC.
intensity analysis contributes to the interpretation of the
speed of changes in LULC over time periods, the gross
losses and gains of each category, and how losses and
gains are realised across categories subject to transition.
The integration of RS, GIS, and simulation models can
contribute to the effective planning and management
of natural resources such as forests, the regulation of
agricultural policies, understanding the drivers of LULC
changes, taking necessary measures in advance, and thus
making better decisions within the scope of sustainable
development.
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