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Abstract

Background: Estimation of forest biomass has become critical as afforestation has been proposed to sequester carbon from 
the atmosphere in order to mitigate climate change. New Zealand Dryland Forestry Innovation (NZDFI), in collaboration 
with the University of Canterbury’s School of Forestry and the Marlborough Research Centre, has initiated a research and 
development programme to gather seed, breed, propagate, identify site limitations, model growth, investigate silviculture, 
and develop wood products from a suite of eucalypts that grow durable heartwood. The aim is to supply naturally durable 
wood for uses that formerly required either imports of durable wood or copper-chrome-arsenate treated pine. 

Methods: As part of a project examining land-use and greenhouse gas budget case studies in Marlborough, New Zealand, 
we collected and summarised data describing above-ground biomass (AGB) of Eucalyptus bosistoana F.Meull., and 
Eucalyptus globoidea Blakely trees across a wide range of combinations of height (h) and diameter at breast height (dbh). 
One hundred and eleven trees were felled, separated into stems, branches and foliage, and the components were weighed 
in the field. Subsamples of these tree parts were collected and weighed in the field after separating bark from stem discs. 
The subsamples were dried in an oven at 105°C, and then weighed. Ratios of dry to wet weights for samples were applied 
to total green weights from the field in order to calculate AGBs of tree components. Systems of non-linear equations were 
simultaneously fitted to the data to ensure additivity; that sums of estimates of tree part AGBs versus dhb, h and slenderness 
(h/dbh) equalled estimates from a model of total tree AGB versus the same independent variables. The study also included 
the development of a plot-level estimation model of above-ground CO2-e/ha for E. globoidea and its incorporation in an 
on-line growth and yield simulator. Moreover, a comparison of two pathways to estimating AGB by aerial LiDAR was made: 
One including estimates of dbh and h from LiDAR and applying the tree-level equations developed in this study, and one 
going directly from LiDAR metrics to estimates of AGB.

Results: A system of models created for both species with a dummy variable denoting species yielded the least biased 
residuals, with 22 coefficients estimated in one simultaneous fit. Standard errors varied with plant part and with the size 
of the prediction, requiring transformations prior to fitting. R2 values also varied with part, but were typically between 
0.96 and 0.98. An exception was foliage and seeds which were influenced by one tree with an unusually high loading of 
seeds. The standard error for plot level estimates of CO2-e was 1.9 tonnes CO2-e /ha and residuals were relatively unbiased. 
Directly predicting individual tree AGB from LiDAR metrics yielded less biased estimates than predicting dbh and h and 
then using those estimates to predict AGB. 

Conclusions: A system of related, additive equations with a dummy variable denoting species represented the above-
ground biomass of Eucalyptus globoidea and Eucalyptus bosistoana with precision adequate for prediction of biomass for 
fuel and carbon storage to mitigate climate change. Direct predictions of biomass from LiDAR metrics were less biased 
than predictions of biomass from tree height and diameter at breast height that were in turn predicted from LiDAR metrics.
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Introduction 
Estimation of forest biomass has become critical as 
afforestation has been proposed to sequester carbon 
from the atmosphere in order to mitigate climate change 
(Obersteiner et al. 2006; Ram Prakash 2010; Aishan et 
al. 2018). The carbon fraction of forest tree biomass is 
typically 50% of total biomass (Beets & Garrett 2018; 
Boucher et al. 2019), and so predictions of total biomass 
per tree can be easily converted into elemental carbon 
biomass, and then multiplied by 44/12 to provide 
estimates of sequestered CO2, a potent greenhouse gas in 
our atmosphere. Clearly the denser the wood grown by a 
tree species, the more potential there may be for carbon 
storage in forests comprising that species.

New Zealand Dryland Forestry Innovation (NZDFI) 
imported seed of, and bred, several species of Eucalyptus 
that grow durable heartwood in order to provide 
naturally posts and poles for New Zealand (Marlborough 
Research Centre Trust 2023). Two very promising species 
in New Zealand conditions are E. globoidea Blakely and 
E. bosistoana F.Meull. These species tend to grow rapidly 
(Salekin et al. 2020) and also have dense wood and so 
they may be ideal for carbon forests and their residues 
may be a rich source of biofuels (Clifton 1990; Passarella 
et al. 2023). However, growers require estimates of 
biomass in order to realise the species’ potential for 
carbon forest or sources of biofuel. Moreover, when 
these estimates are partitioned by plant part quantities 
of biomass removed during harvesting, debris available 
for biofuel, and also leaf area can be determined (Beets 
et al. 2011). Ideally models of biomass should be created 
so that foresters can estimate biomass from common 
measurements such as diameter at breast height (dbh) 
and tree height (h), and also stand-level estimates 
obtained from plots, such as mean top height (MTH) 
(Mason 2019), basal area/ha (G), and stems/ha (N).

Models to predict biomass from tree stem 
measurements have commonly employed logarithmic 
transformations and weighted regression to account 
for non-linearity and heteroscedasticity (Baker et al. 
1984; Madgwick 1994). However, Zheng et al. (2015) 
applied scaled power transformations (Cook & Weisberg 
1999), sometimes known as Box-Cox (Box & Cox 1964) 
transformations, to both dependent and independent 
variables to stabilise residual variance and linearise 
relationships between biomass and dbh2 x h, thereby 
satisfying assumptions of normality and equal variance 
required for linear modelling. As models of biomass 
of plant components are often required, providing 
consistent estimates of total biomass and sums of 
component estimates is important.

Ensuring additivity between models of total above 
ground biomass (AGB) and models of AGB of plant 
components has generally been achieved in two ways: 
1) only models of components are created and then 
total AGB is defined as the sum of component estimates; 
or 2) systems of additive equations are estimated 
simultaneously through joint generalised least squares 

regression, seemingly unrelated regressions, multi-
stage least squares regression or generalised method of 
moments (Bi et al. 2004; Bi et al. 2010; D. H. Zhao et al. 
2015; Daryaei & Sohrabi 2016; Fu et al. 2016; Vonderach 
et al. 2018; Wang et al. 2018; D. Zhao et al. 2019; Levine 
& Valpine 2020; Cuevas Cruz et al. 2022). Often total 
AGB is of prime importance, and so systems of additive 
equations should be preferred because simply summing 
estimates of component estimation models may lead 
to compounded errors. Plot or stand-level estimates 
of AGB and sequestered CO2-e may make estimates of 
sequestration more efficient, and these can be based on 
tree-level models applied to plots.

Stand- or plot-level estimates of AGB or CO2-e 
might be obtained in the same way as stand-level stem 
volume estimates. If MTH and G are known then stem 
volume/ha (V) can be directly obtained from equations 
employing MTH and G as independent variables. Stand-
level V equations are usually made by first applying 
tree-level volume equations (Boczniewicz et al. 2022) 
to trees in plots, calculating plot-level estimates of V, 
and then creating models of V versus G and MTH with 
plots as sampling units. Models of CO2-e/ha versus G 
and MTH might be constructed using similar techniques; 
estimating CO2-e as 0.5 x AGB x 44/12 (Beets & Garrett 
2018) and then fitting models of CO2-e/ha versus MTH 
and G. 

In order to make assessments of sequestered CO2-e 
more efficient, aerial LiDAR estimates of AGB have been 
explored in a parallel study (Ye et al. 2025), and as New 
Zealand foresters currently estimate AGB (and CO2-e) 
as a function of individual tree dbh and h, it is relevant 
to ask whether the best use of LiDAR for estimation of 
sequestered CO2-e is to use LiDAR estimates of dbh and h 
and then use current models to estimate AGB (an indirect 
method), or instead to directly estimate AGB from LiDAR 
metrics (a direct method).

As part of a project examining land-use and 
greenhouse gas budget case studies in Marlborough, 
New Zealand, we initiated a study with the following 
objectives:

1. Destructively sample E. globoidea and E. bosistoana 
trees across as wide a range of dbh and h as 
possible in Marlborough and North Canterbury and 
determine the oven-dry biomass in their above-
ground components.

2. Create additive models of AGB for whole trees and 
their components.

3. Create plot-level models of stand-level CO2-e/ha.

4. Compare indirect LiDAR estimates of tree-level AGB 
as a function of height and dbh, which are themselves 
estimated from LiDAR using the models developed in 
this study with direct LiDAR estimates of tree-level 
AGB.



Methods 

Sites
The NZDFI has a network of over 40 trial sites across 
New Zealand. A range of landowners, including farmers, 
vineyard owners, local authorities, and large-scale 
forest owners and processors are hosting trials on their 
properties. Trees accessed from nine NZDFI sites were 
involved in this research, as shown in Table 1 and Figure 
1. These sites were selected to provide a broad age-
range of trees and because landowners kindly allowed 
destructive sampling of their trees.

Tree selection
An initial survey of candidate trees was conducted, with 
vertex measurements of height, d-tape measurements 
of diameter at breast height at 1.4 m above highest 
ground level (dbh), and notes of species and location. 
The aim of selection was to obtain samples from as wide 
a distribution of tree sizes and height-dbh combinations 
as possible.

Figure 2 shows the height versus dbh of candidate 
trees, while Figure 3 shows trees actually sampled. One 
entire summer between 2022 and 2023 was available, 
and such sampling is very time consuming, so not all 
candidate trees could be sampled. For example, just one 
large tree could take up to three days in the field followed 
by many hours in the laboratory.

Data describing harvested trees can be found in Table 
2. Plantation years ranged from 2003 to 2021. E. globoidea 
planted in 2006 at the MRFP site had the highest average 
DBH, height, and AGB, and both species at H site had 
the lowest values due to their young age. At H site, two 
small Eucalyptus melliodora were also sampled, and in 
addition five trees were added from a previous biomass 
estimation at Harewood in Canterbury. In addition, 
data from one E. globoidea and seven E. bosistoana 
trees sampled for biomass from Harewood in northern 
Christchurch were kindly donated to the study (Dr Daniel 

Bocniewicz, pers. comm.), making a total of 33 and 79 
trees for E. globoidea and E. bosistoana respectively. 
Trees from Harewood ranged from 5.4-7.0 m in height 
and 5.15 and 8 cm in dbh. Our trees were sampled for 
biomass but also for future fitting of compatible stem 
volume and taper equations. As preliminary taper 
and volume equations had already been estimated for  
E. globoidea (Boczniewicz et al. 2022) fewer trees of that 
species were sampled during this study.

Field procedures
The following field procedures were implemented for 
each sampled tree:

1. Ground line diameter (5 cm above ground) and dbh 
(cm) were measured.

2. Canopy widths in the two directions NW-SE and NE-
SW were measured.

3. The north side of the tree was marked on the bark.

4. The tree was then felled. 

5. The tree number was painted on each stump.

6. Diameter over-bark and four bark thicknesses were 
measured at 0.3 m in taper steps of approximately:

•	 25 mm diameter over-bark if the large-end 
diameter is 250 mm or less,

•	 50 mm if the large-end diameter is between  
500 and 250 mm, 

•	 75 mm if the large-end diameter is between  
750 mm and 500 mm, 

•	 so on down to 50 mm, diameter over-bark.

7. If a diameter measurement location happened to be 
on a heavily branched stem section another location 
was chosen either above or under the branches and 
the measurement height was recorded.
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TABLE 1: A description of study sites. Elevation information was extracted from the LiDAR data collected in this research. 
Climate data for the period 1950-1980 were acquired from the New Zealand Environmental Data Stack (NZEnvDS) 
(McCarthy et al. 2021)

Site Name Elevation 
(m)

Temperature (°C) Total 
annual 
Rainfall 
(mm)

Minimum 
during the 
cold month

Maximum
during the 
warm month

Mean 
annual

Fleming and Martin property (FM) 73 - 128 1.6 21.9 11.4 743
Marlborough Regional Forests Pukaka (MRFP) 22 - 115 3.2 22.0 12.4 1183
MacBeth (MB) 104 - 213 0.5 23.1 11.5 902
Marlborough Regional Forests Waikakaho (MRFW) 20 - 67 1.8 23.1 12.4 997
Marlborough District Council Cravens Road (MDCC) 14 - 31 1.7 23.0 12.6 830
Holdaway (H) 287 - 340 -0.5 22.8 11.1 1114
Dillon (D) 218 - 265 -0.1 23.4 11.8 824
Avery (A) 8 - 87 3.4 21.6 12.5 632
Lawson (L) 117 - 177 1.9 22.3 12.2 727



8. The height of diameter measurement was recorded 
and marked using the colours red (on the bottom), 
blue (on the top); pattern: 2 cm red – cut mark –  
2 cm blue

9. All branches were removed from the stem, and then 
tree height (m) and height to the base of the green 
canopy (m) were measured.
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10. The stem was weighed and 5 cm thick discs were 
cut at marked points. Bark thickness was measured 
on each disk in N, S, E and W directions. Each disk 
was labelled with tree number, height up the stem 
and disk number from the base.

11. The wet disks were weighed together or in groups, 
and then they were debarked and their bark was 

FIGURE 1: Location of sites.

FIGURE 2: Height and dbh of candidate trees identified prior to field sampling



weighed separately. Each disk was stain with methyl 
red to show where the heartwood was. A graduated 
ruler was placed on the top of each disk so that 
heartwood and disk outline could be seen, and the 
disks were imaged with a digital camera.

12. Bark removed from discs was inserted in a labelled 
paper bag and the weight of bag plus bark was 
recorded.

13. Small-leaved foliage, large foliage, and seed capsules 
were removed separately and weighed, and small 
samples of small foliage and large foliage for dry 
mass analysis were in labelled paper bags (about 15 
× 15 × 15 cm) which were then weighed.

14. An extra sample (about 10 leaves) of each category 
of foliage was placed in a labelled, sealed plastic bag 
for surface area analysis.
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FIGURE 3: Height and dbh of trees sampled during this study

TABLE 2: General description of the ground measured trees
Site Species Year 

planted
No. 

sample 
trees

Tree height 
(mean (standard 
deviation)) (m)

dbh (mean 
(standard 

deviation)) (cm)

AGB (mean 
(standard 

deviation)) (kg)

FM E. bosistoana 2003/04 17 10.55 (2.38) 14.95 (4.69) 79.68 (72.30)

MRFP
E. bosistoana 2003 12 20.84 (3.25) 21.53 (5.50) 210.84 (139.98)
E. globoidea 2006 13 21.97 (2.64) 32.75 (9.70) 324.17 (215.01)

MB
E. bosistoana

2014
3 6.32 (2.35) 6.10 (3.51) 12.40 (14.39)

E. globoidea 10 8.65 (1.62) 13.08 (3.11) 40.42 (21.32)
MRFW E. bosistoana 2005 6 16.25 (3.47) 25.10 (7.79) 263.58 (242.10)
MDCC E. bosistoana 2009 12 16.41 (3.07) 17.88 (3.17) 118.73 (55.86)

H
E. bosistoana

2021
3 1.91 (0.23) 0.47 (0.12) 0.64 (0.17)

E. globoidea 2 2.32 (0.59) 0.95 (0.92) 1.86 (0.49)
D E. bosistoana 2018 3 3.59 (1.19) 3.23 (1.92) 5.69 (4.29)
A E. globoidea 2011 8 8.87 (1.53) 15.95 (2.82) 47.79 (23.63)
L E. bosistoana 2009 15 11.44(1.48) 13.97 (4.03) 66.21 (39.07)



15. Branches were weighed and then a sample  
(5 × 15 cm sections) of the branches was placed in a 
bag for drying. All wet samples and their bags were 
weighed.

16. A high-quality GPS reading of the tree’s location was 
estimated using a Trimble Geo 7 × global navigation 
satellite system (GNSS) (post-processed horizontal 
accuracy ranging from 0.1 m to 1 m). A montage of 
field procedures is shown in Figure 4.

Laboratory procedures
In a laboratory the following procedures were used to 
process the samples:

1.	 A leaf surface area machine was used to measure 
leaf areas for plastic bag samples, then the leaves 
were placed in new, small brown bags with the label 
of tree number, foliage type and “SLA” (because 
those samples would be later be used to calculate 
specific leaf area).

2.	 The volume of each disk was measured by 
immersion.

3.	 The brown-bag samples and disks were placed in an 
oven at 105 °C.

4.	 A sub-set of the wood samples for each tree was 
periodically measured to determine when they had 
stabilised.

5.	 All dried samples were weighed when the weight 
had stabilised.

Analysis

Data storage and summarisation
Data were entered into a relational database built for 
the study, with tables for trees, disks and wood blocks, 
forms for data entry, and several pre-designed queries 
so that data could be exported to R statistical software 
(R Development Core Team, 2004). Tree-level data were 
then exported to R, and the ratio between subsample 
dry and green weights was applied to field green 
measurements of biomass pools in order to calculate the 
above-ground biomass of stem wood, bark, branches, 
foliage and seeds. Dry weights of these biomass pools 
were summed to calculate total aboveground biomass 
(AGB) of harvested trees.

Modelling individual tree AGB
With such small samples the question arose whether to 
create separate modelling systems for each species or 
one combined modelling system with species as a term in 
the equations. The advantage of separate models would 
be that relationships between components and stem 
measures might be quite different between species, but 
numbers of sampled trees were small especially among 
large trees because they were so expensive to sample. 
It was likely that models with small samples might be 
overly influenced by just a few trees. To compare the 
two strategies initial, stand-alone models were created 
for all components and total AGB for each species 
separately and for the species combined. Model mean 
standard errors and r2 values were compared, and also 
for total tree AGB jackknife (leave one out) validations 
were conducted and both fitting statistics and residual 
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FIGURE 4: from left to right, then top to bottom: Tree felled; high quality GPS location; Marking disks to be cut; weighing 
the whole stem; disks cut; disks collected; note taking; and image of disk stained to show heartwood



plots were examined. As shown in the results section, 
combined-species models were found to be as precise as 
separate ones, and were more stable when subjected to 
validation.

Linear models often require transformations to 
stabilise variance and make relationships linear. This 
was very important for our study because relationships 
tended to be curved and residuals heteroscedastic. 
Consequently, scaled power transformations were used 
(Equation 1):

		  (xλ – 1)/λ     λ ≠ 0	  	 Equation 1
		  log(x)            λ = 0

where x is the variable being transformed, and λ is 
a parameter that varies usually between -2 and 5, 
providing a range of transformed shapes. Lambda (λ) 
values should be chosen to make frequency distributions 
of variables as normal as possible. A plot of tree AGB 
versus dbh2*h (D2H) was inspected, and following 
inspection both D2H and AGB were transformed using 
scaled power transformations.

Linear models were fitted for the whole tree and for 
each component with transformed AGB as the response 
variables, and both transformed D2H, slenderness  
(h/dbh) and a categorical variable for species as 
independent variables. Slenderness was included 
because it might represent the extent to which trees 
were growing in a relatively large gap and this might 
influence allocation of biomass to different components. 
Models were first fitted with all possible main effects and 
interactions, and then insignificant model terms, using 
type 3 sums of squares, were removed sequentially. 
After each removal the significance of each remaining 
term was re-examined. The principle of marginality was 
applied; main effect terms were retained irrespective 
of their statistical significance (P<0.05) if they were 
present in statistically significant interactions.

Once these models had been fitted command 
nlsystemfit from the systemfit library (version 1.1) 
in R (R Core Team 2013) was used to create additive 
models, using ordinary least squares. Branch AGB was 
set to the total AGB function minus the sum of all the 
other functions to assure additivity. Scaled transformed 
response variables, total AGB and AGB of components 
stemwood, stem bark, foliage & seeds could only have 
their best, unique λ values for the transformation 
included as back-transformations of the right-hand side 
of the equations, which then placed all the additions in 
untransformed kg of biomass. The reason for this is that 
to ensure additivity the dependent variables had to be 
in the same currency, and their best fit λ values were all 
different. This strategy retained linearity but would still 
open small fitted values to possible bias because they 
would have far smaller residuals than large fitted values. 
To avoid this bias the models were weighted by d × h, 
dividing each equation side by d × h. The steps were: 1) 
Create individual, non-additive models using command 
nls in R for each component model in order to provide 
estimates of starting parameters, and then 2) use those 
starting parameters in nlsystemfit using the ordinary 

least squares fitting option to create additive models. 
After models were fitted histograms of raw residuals 
were examined the ensure they were close to normal, 
and then back-transformed fitted values and residuals 
were used to create plots of residuals and also plots of 
fitted versus actual values that were inspected for bias. 

Modelling stand-level AGB and CO2 sequestered
In order to model above-ground biomass and CO2 per 
hectare on a plot basis for E. globoidea, permanent 
sample plot data used by Salekin et al. (2020) were used. 
The individual tree AGB model developed in this study 
was applied to each tree in every permanent sample 
plot (PSP) at each time of measurement, and then 
these were summed to calculate plot-level AGB at each 
measurement time in each PSP. Tree heights and dbhs 
in plots were then used to calculate mean top heights 
at each measurement time (Mason 2019), along with 
basal area per plot calculated from dbh measurements. 
Basal areas and above-ground biomass sums were then 
divided by plot size to put them on a per hectare basis. 
AGB/ha was converted from kg into tonnes, divided by 
2 to represent elemental C (Beets & Garrett 2018), and 
then multiplied by 44/12 in order to represent above-
ground CO2-e/ha.

Three different equations (2-4) were evaluated as 
ways to predict above-ground CO2-e/ha from basal area/
ha (G) and mean top height (MTH).

	 C/G = α +β * MTH			  Equation 2

	 C = α * Gβ * MTHγ	 		  Equation 3

	 C = eα +β*log(G*MTH) + γ*SDI		  Equation 4

In these equations C=above-ground CO2-e/ha in tonnes, 
G=basal area/ha in m2/ha, MTH = mean top height in m, 
SDI=Reineke’s stand density index (Reineke 1933) and 
Greek letters are fitted coefficients.

The analyses employed both linear and non-linear 
mixed effects using the lmer or nlme functions in  
R packages lme4 (version 1.1) and nlme (version 3.1), 
depending on the nature of the equation, with plot as 
a random effect to take account of repeated measures. 
Model quality was judged by inspecting plots of residuals 
versus predicted values and calculating standard errors.

Estimation of above-ground biomass using LiDAR
This study combined with our report on the use of 
UAV LiDAR (Ye et al. 2025) to measure above ground 
biomass had potential to explore how we might 
measure CO2-e stored by forest owners who register 
their forest stands in New Zealand’s emissions trading 
scheme (ETS). The forest measurement approach to 
estimation of C sequestration is currently set up to 
receive measurements of tree stem heights and dbhs 
which are then used to estimate tree biomass and 
carbon content. Airborne LiDAR may be a way to acquire 
estimations more efficiently, but this raises the question 
of whether LiDAR should be used to estimate heights 
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x(λ) = {



and dbhs for the ETS, indirectly assessing biomass and 
C, or alternatively tree biomass and C should be directly 
assessed from LiDAR metrics.

It has become clear that LiDAR is good at measuring 
tree heights, but may be relatively poor at measuring 
dbhs. There are logical reasons for this:

1. A LiDAR metric called zq95, the height below which 
95% of all returns come from a tree is strongly 
related to tree height, and may differ only slightly 
with different species due to their different shapes 
at the tops of canopies (Ye et al. 2025).

2. Dbh is not easily visible from airborne LiDAR, 
and although oblique LiDAR might help (Justin 
Morgenroth pers. comm.), the odds are that dbhs of 
many stems will be undetectable with LiDAR.

3. While foresters routinely estimate heights from trees 
that have only dbh measurements in inventories, 
quite commonly the dominant trees in a stand have a 
wide range of dbhs but more or less the same height, 
and so it is not routinely feasible to predict dbh from 
LiDAR height measurements.

4. Indices of competition such as heights of and 
distances to neighbouring trees, site fertility 
estimates, and knowledge of stocking management 
may help somewhat in estimating dbh from LiDAR 
estimates of height, but these techniques have not 
yet materialised.

Ye et al. (2025), using the same dataset as ours along 
with LiDAR metrics for individual trees, reported on 
a Partial Least Squares Regression (PLSR) model to 
directly estimate AGB from LiDAR metrics. As reported 
in their paper:

“The surveys were executed using a DJI Matrice 300 
RTK equipped with a Zenmuse L1 LiDAR sensor on 
board. ... The survey employed a single grid flight 
pattern, capturing triple returns at a sampling rate of 
160 kHz. The Zenmuse L1 sensor incorporates a camera 
that captures the red, green, and blue (RGB) bands. 
The collected data were pre-processed using DJI Terra 
3.11.7.1 (https://www.dji.com/nz/dji-terra), which 
included optimising LiDAR point cloud accuracy, 
smoothing the cloud, exporting the data into the 
standard format, and reconstructing an orthophoto.”

They found that a PLSR model best estimated dbh, and 
a good regression model of tree height versus zq95. We 
used all these models with ours in this study to compare 
“indirect” and “direct” estimates of AGB from LiDAR. A 
“direct” method would predict AGB from LiDAR metrics, 
whereas an indirect method would involve estimation of 
AGB from dbh and height that were derived from LiDAR. 
This was relevant because attempts to use LiDAR for the 
purposes of the ETS had focussed on models of AGB as 
functions of tree dbh and height that were themselves 
estimated from LiDAR.

Results

Modelling individual tree above-ground biomass 
(AGB)
A graph of AGB versus D2H is shown in Figure 5. Individual 
stand-alone models of total AGB/tree for each species 
were less stable during validation, particularly for E. 
globoidea (residual plots not shown), and component 
models were similarly precise using combined species 
models (Table 3). Therefore, a combined species AGB 
modelling strategy was adopted. The standard errors 
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FIGURE 5: AGB versus D2H by species

https://www.dji.com/nz/dji-terra


shown in Table 3 are mean standard errors after back 
transformation, and so note that, with heteroscedastic 
models, larger standard errors would be attached to 
larger estimates and smaller ones to smaller estimates. 
Residuals for the combined species model of total AGB 
along with jackknife (Tukey 1958) residuals are shown 
in Figure 6. The nlsystemfit procedure involved fitting  

22 coefficients simultaneously (Table 4). Plots of 
residuals versus fitted values and fitted values versus 
actual values are presented in Figures 7 to 15. One outlier 
from a large, spreading tree with many seed capsules was 
detected in the foliage and biomass component model 
but, as this outlier was real and most other estimates 
unbiased, we left it in the model.
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Component Species Standard error (kg) r2

Total biomass Both 21.6 0.977
Total biomass Both, jackknife validation 23.0 0.973
Stem Both 13.7 0.978
Bark Both 3.70 0.961
Foliage and seeds Both 4.30 0.735
Branches Both 9.71 0.877
Total biomass E. globoidea 27.0 0.979
Total biomass E. globoidea, jackknife validation 34.2 0.967
Stem E. globoidea 18.3 0.981
Bark E. globoidea 4.55 0.961
Foliage and seeds E. globoidea 3.94 0.859
Branches E. globoidea 10.3 0.829
Total biomass E. bosistoana 21.3 0.971
Total biomass E. bosistoana, jackknife validation 22.8 0.967
Stem E. bosistoana 14.0 0.962
Bark E. bosistoana 3.37 0.959
Foliage and seeds E. bosistoana 3.45 0.894
Branches E. bosistoana 7.20 0.940

TABLE 3: Mean standard errors and r2 values for unconstrained models of biomass components showing values for 
joint and separate models for the two species

FIGURE 6: Residual versus predicted values of AGB/tree by species, with the full model fit shown blue and the jackknife 
residuals in red
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Modelling plot-level CO2-e/ha
Equation 4 provided the least biased and most precise 
estimate of CO2-e/ha by a wide margin, and so only the 
results for that model are reported here. The standard 
error was 1.92 tonnes CO2-e/ha, and the residuals 
were relatively unbiased (Figure 16). Table 5 shows 
the model’s fixed effect coefficients. Note that when 
applied to plots within the same range but not in the 
fitting set (i.e.: using just fixed effects) this model would 
be less precise, with a standard error of approximately  
14 tonnes CO2-e/ha. Using the model outside the range 
of Salekin et al.’s (2020) growth and yield model would 
result in an extrapolation and even greater errors. This 
model was applied in an on-line, plot-level growth and 
yield simulator for E. globoidea which can be found at: 

http://www.treesandstars.com/euan/egloboidea.htm 
An output of the model can be seen in Figure 17.

Estimation of above-ground biomass using LiDAR
The indirect pathway for estimating AGB/tree from 
LiDAR was more biased in this study than direct 
estimation from LiDAR (Figures 18 and 19).

Discussion
Many previous studies have used additive models to 
represent biomass of individual trees (Bi et al. 2004; 
Bi et al. 2010; D. H. Zhao et al. 2015; Daryaei & Sohrabi 
2016; Fu et al. 2016; Vonderach et al. 2018; Wang et 
al. 2018; D. Zhao et al. 2019; Levine & Valpine 2020; 

Model Intercept D2H
λ=0.24

Species
(1 or 0)

h/d
λ=-1.27

D2H*Spp D2H*
h/d

h/d*
Spp

Total AGB
λ=0.17

0.05769973 
(1.110e-09)

0.25482753
(5.958e-11)

0.82093885
(8.553e-10)

-0.26895444
(1.530e-09)

-0.05786229
(6.105e-11)

Stem
λ=0.18

-1.39298307
(2.259e-09)

0.26576073
(8.892e-11)

0.62687770
(2.818e-09)

-0.04434272
(1.207e-10)

Bark
λ=0.35

-2.61727152
(9.572e-09)

0.30217405
(9.572e-09)

1.28805265
(1.225e-08)

1.87233580
(1.509e-08)

-0.11871546
(9.962e-10)

-0.02343348
(5.688e-10)

-1.79600684
(1.917e-08)

Foliage & seed
λ=0.42

-0.83831203
(8.116e-09)

0.15436852
(6.763e-10)

0.62174469
(1.654e-09)

-0.01437024
(1.311e-08)

-0.01749251
(6.064e-10)

-0.02811382
(6.380e-10)

TABLE 4: Model coefficients and standard errors (in parentheses) and l values

FIGURE 7: Actual versus predicted values of AGB/tree by species for the nlsystemfit model

http://www.treesandstars.com/euan/egloboidea.htm
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Cuevas Cruz et al. 2022). What is new about this study 
is combining scaled power transformations of biomass 
equations (Zheng et al. 2015) with weighted regression 
to avoid bias, the inclusion of h/dbh to help distinguish 
spreading trees, and also providing biomass equations 
for two species whose biomass has not been reported 
previously and that are becoming important in New 
Zealand.

A small function has been created in R to report AGBs 
for any tree within range of the data by its components. 
The command and output look like this:

> predBiomass(25,24,0)
Biomass (kg)	 %
Stem		  182.77589 60
Bark		  54.72537 18
Foliage & Seed	 14.92729 5
Branch		  53.42213 17
Total		  305.85068 100

In this case the dbh = 25 cm, the height = 24 m, and the 
zero denotes E. bosistoana. The function is available from 
the corresponding author.

The models developed during this study have already 
contributed greatly to the objective of the wider SLMACC 
project by providing tools to estimate CO2-e contents of 
trees and stands of E. globoidea and trees of E. bosistoana 
in Marlborough, and also a test dataset for investigating 
whether or not LiDAR can be used to measure AGB of 
trees and stands. The data collected will be further 
analysed to:

•	 create a set of compatible pool-level ABG equations 
for the two species

•	 create models to estimate leaf area index

•	 improve taper and volume equations that include 
estimates of heartwood (Boczniewicz et al. 2022)

FIGURE 8: Residuals of the predicted stem biomass 
model fiited with nlsystemfit

FIGURE 9: Fitted versus actual model for stem biomass

FIGURE 10: Residuals of the bark biomass model fitted 
with nlsystemfit

FIGURE 11: Fitted versus actual bark biomass values for 
the nlsystemfit model



•	 investigate of patterns of wood basic density within 
stems for the two species

•	 enable projections for case studies that are the focus 
of the project of which the study reported here is a 
part.

A factor pertinent to whether LiDAR should be used 
to measure AGB directly from LiDAR or indirectly via 
stem measurements from LiDAR is that for young trees 
stem biomass is a minority proportion of total biomass, 
and even for large trees, in the study described here, 
~15% of biomass was in foliage and branches, but this 
percentage was highly variable. Therefore, LiDAR may 
be useful at helping us to determine a contribution of 
foliage and branches to biomass which would not be 
well estimated from only stem measurements. Moreover, 

from a modelling perspective we should expect that 
indirectly chaining together several tree models to 
estimate AGB might result in biased estimates. In this 
study we created a very good model of biomass versus 
D2H. The implication is that directly estimating AGB with 
LiDAR may be a better strategy than pursuing height 
and dbh estimates from LiDAR and then using dbh and 
height to predict AGB. Moreover, as we are interested in 
stand-level C content for the ETS, individual tree models 
may be inferior to models that measure C directly from 
LiDAR metrics for the whole stand.

Conclusions
Individual tree AGB of E. globoidea and E. bosistoana was 
found to be well estimated from an equation employing 
D2H, h/dbh, and species as independent variables along 
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FIGURE 12: Residuals of the foliage and seeds nlsystemfit 
models

FIGURE 13: Fitted versus actual values of the foliage and 
seeds model

FIGURE 14: Residuals of the branch biomass nlsystemfit 
model

FIGURE 15: Fitted versus actual values of the branch 
biomass model



with their interactions. The R2 value was 0.98 and the 
average standard error was 22 Kg, although the standard 
error when using the model would be smaller for small 
trees and larger for large trees. Compatible, additive 
models of tree components were well estimated when 
all models were fitted simultaneously, providing very 
high correlations with actual values.
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FIGURE 16: Residuals of the plot-level estimation of 
CO2-e using equation 4, with plot as a random effect

Parameter Estimate Std. error Pr(>|t|)
a 0.2527384 9.761E-02 0.0122
b 0.7389601 1.640E-02 <2.00E-16
g 2.939E-04 1.836E-05 <2.00E-16

TABLE 5: Fixed effect parameters for Equation 4 after 
fitting to PSP data

FIGURE 17: The on-line growth and yield simulator for E. globoidea that now includes projections of CO2-e/ha

Plot-level estimates of above-ground CO2-e were well 
fitted to an exponential model that employed MTH, G 
and SDI as independent variables, and had a standard 
error when only fixed effects were used of approximately  
15 tonnes CO2-e/ha. This model has been incorporated 
into an on-line plot-level growth and yield simulator that 
is freely available to the public.

Direct estimates of AGB from LiDAR were found to 
be less biased than indirect estimates that used LiDAR 
estimates of height and dbh and then employed height 
and dbh to estimate AGB from a model.
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