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Abstract

Background: Estimation of forest biomass has become critical as afforestation has been proposed to sequester carbon from
the atmosphere in order to mitigate climate change. New Zealand Dryland Forestry Innovation (NZDFI), in collaboration
with the University of Canterbury’s School of Forestry and the Marlborough Research Centre, has initiated a research and
development programme to gather seed, breed, propagate, identify site limitations, model growth, investigate silviculture,
and develop wood products from a suite of eucalypts that grow durable heartwood. The aim is to supply naturally durable
wood for uses that formerly required either imports of durable wood or copper-chrome-arsenate treated pine.

Methods: As part of a project examining land-use and greenhouse gas budget case studies in Marlborough, New Zealand,
we collected and summarised data describing above-ground biomass (AGB) of Eucalyptus bosistoana FMeull., and
Eucalyptus globoidea Blakely trees across a wide range of combinations of height (h) and diameter at breast height (dbh).
One hundred and eleven trees were felled, separated into stems, branches and foliage, and the components were weighed
in the field. Subsamples of these tree parts were collected and weighed in the field after separating bark from stem discs.
The subsamples were dried in an oven at 105°C, and then weighed. Ratios of dry to wet weights for samples were applied
to total green weights from the field in order to calculate AGBs of tree components. Systems of non-linear equations were
simultaneously fitted to the data to ensure additivity; that sums of estimates of tree part AGBs versus dhb, h and slenderness
(h/dbh) equalled estimates from a model of total tree AGB versus the same independent variables. The study also included
the development of a plot-level estimation model of above-ground CO,-e/ha for E. globoidea and its incorporation in an
on-line growth and yield simulator. Moreover, a comparison of two pathways to estimating AGB by aerial LiDAR was made:
One including estimates of dbh and h from LiDAR and applying the tree-level equations developed in this study, and one
going directly from LiDAR metrics to estimates of AGB.

Results: A system of models created for both species with a dummy variable denoting species yielded the least biased
residuals, with 22 coefficients estimated in one simultaneous fit. Standard errors varied with plant part and with the size
of the prediction, requiring transformations prior to fitting. R? values also varied with part, but were typically between
0.96 and 0.98. An exception was foliage and seeds which were influenced by one tree with an unusually high loading of
seeds. The standard error for plot level estimates of CO,-e was 1.9 tonnes CO,-e /ha and residuals were relatively unbiased.
Directly predicting individual tree AGB from LiDAR metrics yielded less biased estimates than predicting dbh and h and
then using those estimates to predict AGB.

Conclusions: A system of related, additive equations with a dummy variable denoting species represented the above-
ground biomass of Eucalyptus globoidea and Eucalyptus bosistoana with precision adequate for prediction of biomass for
fuel and carbon storage to mitigate climate change. Direct predictions of biomass from LiDAR metrics were less biased
than predictions of biomass from tree height and diameter at breast height that were in turn predicted from LiDAR metrics.
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Introduction

Estimation of forest biomass has become critical as
afforestation has been proposed to sequester carbon
from the atmosphere in order to mitigate climate change
(Obersteiner et al. 2006; Ram Prakash 2010; Aishan et
al. 2018). The carbon fraction of forest tree biomass is
typically 50% of total biomass (Beets & Garrett 2018;
Boucher et al. 2019), and so predictions of total biomass
per tree can be easily converted into elemental carbon
biomass, and then multiplied by 44/12 to provide
estimates of sequestered CO,, a potent greenhouse gas in
our atmosphere. Clearly the denser the wood grown by a
tree species, the more potential there may be for carbon
storage in forests comprising that species.

New Zealand Dryland Forestry Innovation (NZDFI)
imported seed of, and bred, several species of Eucalyptus
that grow durable heartwood in order to provide
naturally posts and poles for New Zealand (Marlborough
Research Centre Trust 2023). Two very promising species
in New Zealand conditions are E. globoidea Blakely and
E. bosistoana FMeull. These species tend to grow rapidly
(Salekin et al. 2020) and also have dense wood and so
they may be ideal for carbon forests and their residues
may be a rich source of biofuels (Clifton 1990; Passarella
et al. 2023). However, growers require estimates of
biomass in order to realise the species’ potential for
carbon forest or sources of biofuel. Moreover, when
these estimates are partitioned by plant part quantities
of biomass removed during harvesting, debris available
for biofuel, and also leaf area can be determined (Beets
etal. 2011). Ideally models of biomass should be created
so that foresters can estimate biomass from common
measurements such as diameter at breast height (dbh)
and tree height (h), and also stand-level estimates
obtained from plots, such as mean top height (MTH)
(Mason 2019), basal area/ha (G), and stems/ha (N).

Models to predict biomass from tree stem
measurements have commonly employed logarithmic
transformations and weighted regression to account
for non-linearity and heteroscedasticity (Baker et al.
1984; Madgwick 1994). However, Zheng et al. (2015)
applied scaled power transformations (Cook & Weisberg
1999), sometimes known as Box-Cox (Box & Cox 1964)
transformations, to both dependent and independent
variables to stabilise residual variance and linearise
relationships between biomass and dbh? x h, thereby
satisfying assumptions of normality and equal variance
required for linear modelling. As models of biomass
of plant components are often required, providing
consistent estimates of total biomass and sums of
component estimates is important.

Ensuring additivity between models of total above
ground biomass (AGB) and models of AGB of plant
components has generally been achieved in two ways:
1) only models of components are created and then
total AGB is defined as the sum of component estimates;
or 2) systems of additive equations are estimated
simultaneously through joint generalised least squares
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regression, seemingly unrelated regressions, multi-
stage least squares regression or generalised method of
moments (Bi et al. 2004; Bi et al. 2010; D. H. Zhao et al.
2015; Daryaei & Sohrabi 2016; Fu et al. 2016; Vonderach
et al. 2018; Wang et al. 2018; D. Zhao et al. 2019; Levine
& Valpine 2020; Cuevas Cruz et al. 2022). Often total
AGB is of prime importance, and so systems of additive
equations should be preferred because simply summing
estimates of component estimation models may lead
to compounded errors. Plot or stand-level estimates
of AGB and sequestered CO,-e may make estimates of
sequestration more efficient, and these can be based on
tree-level models applied to plots.

Stand- or plot-level estimates of AGB or CO,-e
might be obtained in the same way as stand-level stem
volume estimates. If MTH and G are known then stem
volume/ha (V) can be directly obtained from equations
employing MTH and G as independent variables. Stand-
level V equations are usually made by first applying
tree-level volume equations (Boczniewicz et al. 2022)
to trees in plots, calculating plot-level estimates of V,
and then creating models of V versus G and MTH with
plots as sampling units. Models of CO,-e/ha versus G
and MTH might be constructed using similar techniques;
estimating CO,-e as 0.5 x AGB x 44/12 (Beets & Garrett
2018) and then fitting models of CO,-e/ha versus MTH
and G.

In order to make assessments of sequestered CO,-e
more efficient, aerial LiDAR estimates of AGB have been
explored in a parallel study (Ye et al. 2025), and as New
Zealand foresters currently estimate AGB (and CO,-e)
as a function of individual tree dbh and h, it is relevant
to ask whether the best use of LiDAR for estimation of
sequestered CO,-e is to use LiDAR estimates of dbh and h
and then use current models to estimate AGB (an indirect
method), or instead to directly estimate AGB from LiDAR
metrics (a direct method).

As part of a project examining land-use and
greenhouse gas budget case studies in Marlborough,
New Zealand, we initiated a study with the following
objectives:

1. Destructively sample E. globoidea and E. bosistoana
trees across as wide a range of dbh and h as
possible in Marlborough and North Canterbury and
determine the oven-dry biomass in their above-
ground components.

2. Create additive models of AGB for whole trees and
their components.

3. Create plot-level models of stand-level CO,-e/ha.

4. Compare indirect LiDAR estimates of tree-level AGB
as a function of height and dbh, which are themselves
estimated from LiDAR using the models developed in
this study with direct LiDAR estimates of tree-level
AGB.
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Methods

Sites

The NZDFI has a network of over 40 trial sites across
New Zealand. A range of landowners, including farmers,
vineyard owners, local authorities, and large-scale
forest owners and processors are hosting trials on their
properties. Trees accessed from nine NZDFI sites were
involved in this research, as shown in Table 1 and Figure
1. These sites were selected to provide a broad age-
range of trees and because landowners kindly allowed
destructive sampling of their trees.

Tree selection

An initial survey of candidate trees was conducted, with
vertex measurements of height, d-tape measurements
of diameter at breast height at 1.4 m above highest
ground level (dbh), and notes of species and location.
The aim of selection was to obtain samples from as wide
a distribution of tree sizes and height-dbh combinations
as possible.

Figure 2 shows the height versus dbh of candidate
trees, while Figure 3 shows trees actually sampled. One
entire summer between 2022 and 2023 was available,
and such sampling is very time consuming, so not all
candidate trees could be sampled. For example, just one
large tree could take up to three days in the field followed
by many hours in the laboratory.

Data describing harvested trees can be found in Table
2.Plantationyearsranged from 2003 to 2021. E. globoidea
planted in 2006 at the MRFP site had the highest average
DBH, height, and AGB, and both species at H site had
the lowest values due to their young age. At H site, two
small Eucalyptus melliodora were also sampled, and in
addition five trees were added from a previous biomass
estimation at Harewood in Canterbury. In addition,
data from one E. globoidea and seven E. bosistoana
trees sampled for biomass from Harewood in northern
Christchurch were kindly donated to the study (Dr Daniel
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Bocniewicz, pers. comm.), making a total of 33 and 79
trees for E. globoidea and E. bosistoana respectively.
Trees from Harewood ranged from 5.4-7.0 m in height
and 5.15 and 8 cm in dbh. Our trees were sampled for
biomass but also for future fitting of compatible stem
volume and taper equations. As preliminary taper
and volume equations had already been estimated for
E. globoidea (Boczniewicz et al. 2022) fewer trees of that
species were sampled during this study.

Field procedures
The following field procedures were implemented for
each sampled tree:

1. Ground line diameter (5 cm above ground) and dbh
(cm) were measured.

2. Canopy widths in the two directions NW-SE and NE-
SW were measured.

. The north side of the tree was marked on the bark.
. The tree was then felled.

. The tree number was painted on each stump.

N U1 A W

. Diameter over-bark and four bark thicknesses were
measured at 0.3 m in taper steps of approximately:

e 25 mm diameter over-bark if the large-end
diameter is 250 mm or less,

e 50 mm if the large-end diameter is between
500 and 250 mm,

e 75 mm if the large-end diameter is between
750 mm and 500 mm,

¢ so on down to 50 mm, diameter over-bark.

7. 1f a diameter measurement location happened to be
on a heavily branched stem section another location
was chosen either above or under the branches and
the measurement height was recorded.

TABLE 1: A description of study sites. Elevation information was extracted from the LiDAR data collected in this research.
Climate data for the period 1950-1980 were acquired from the New Zealand Environmental Data Stack (NZEnvDS)

(McCarthy et al. 2021)

Site Name Elevation Temperature (°C) Total
Minimum  Maximum Mean am.lual
during the during the annual Rainfall
cold month warm month (mm)

Fleming and Martin property (FM) 73-128 1.6 219 11.4 743

Marlborough Regional Forests Pukaka (MRFP) 22-115 3.2 22.0 12.4 1183

MacBeth (MB) 104 - 213 0.5 231 11.5 902

Marlborough Regional Forests Waikakaho (MRFW) 20-67 1.8 23.1 12.4 997

Marlborough District Council Cravens Road (MDCC) 14-31 1.7 23.0 12.6 830

Holdaway (H) 287 - 340 -0.5 22.8 11.1 1114

Dillon (D) 218 - 265 -0.1 23.4 11.8 824

Avery (A) 3.4 21.6 12.5 632

Lawson (L) 117 -177 1.9 223 12.2 727
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FIGURE 1: Location of sites.

8. The height of diameter measurement was recorded 10. The stem was weighed and 5 cm thick discs were
and marked using the colours red (on the bottom), cut at marked points. Bark thickness was measured
blue (on the top); pattern: 2 cm red - cut mark - on each disk in N, S, E and W directions. Each disk
2 cm blue was labelled with tree number, height up the stem

and disk number from the base.

9. All branches were removed from the stem, and then
tree height (m) and height to the base of the green 11. The wet disks were weighed together or in groups,
canopy (m) were measured. and then they were debarked and their bark was

Candidate trees

Location
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FIGURE 2: Height and dbh of candidate trees identified prior to field sampling
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Sampled trees
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FIGURE 3: Height and dbh of trees sampled during this study

weighed separately. Each disk was stain with methyl
red to show where the heartwood was. A graduated
ruler was placed on the top of each disk so that
heartwood and disk outline could be seen, and the
disks were imaged with a digital camera.

13.Small-leaved foliage, large foliage, and seed capsules
were removed separately and weighed, and small
samples of small foliage and large foliage for dry
mass analysis were in labelled paper bags (about 15
x 15 x 15 cm) which were then weighed.

12. Bark removed from discs was inserted in a labelled
paper bag and the weight of bag plus bark was

14. An extra sample (about 10 leaves) of each category
of foliage was placed in a labelled, sealed plastic bag

recorded. for surface area analysis.
TABLE 2: General description of the ground measured trees
Site Species Year No. Tree height dbh (mean AGB (mean
planted sample (mean (standard (standard (standard
trees deviation)) (m) deviation)) (cm)  deviation)) (kg)
FM E. bosistoana 2003/04 17 10.55 (2.38) 14.95 (4.69) 79.68 (72.30)
MREP E. bosistoana 2003 12 20.84 (3.25) 21.53 (5.50) 210.84 (139.98)
E. globoidea 2006 13 21.97 (2.64) 32.75 (9.70) 324.17 (215.01)
MEB E. bosistoana 2014 3 6.32 (2.35) 6.10 (3.51) 12.40 (14.39)
E. globoidea 10 8.65 (1.62) 13.08 (3.11) 40.42 (21.32)
MRFW  E. bosistoana 2005 6 16.25 (3.47) 25.10 (7.79) 263.58 (242.10)
MDCC  E. bosistoana 2009 12 16.41 (3.07) 17.88 (3.17) 118.73 (55.86)
H E. bosistoana 2021 1.91 (0.23) 0.47 (0.12) 0.64 (0.17)
E. globoidea 2 2.32(0.59) 0.95 (0.92) 1.86 (0.49)
D E. bosistoana 2018 3.59 (1.19) 3.23(1.92) 5.69 (4.29)
E. globoidea 2011 8 8.87 (1.53) 15.95 (2.82) 47.79 (23.63)
L E. bosistoana 2009 15 11.44(1.48) 13.97 (4.03) 66.21 (39.07)
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15. Branches were weighed and then a sample
(5 x 15 cm sections) of the branches was placed in a
bag for drying. All wet samples and their bags were
weighed.

16. A high-quality GPS reading of the tree’s location was
estimated using a Trimble Geo 7 x global navigation
satellite system (GNSS) (post-processed horizontal
accuracy ranging from 0.1 m to 1 m). A montage of
field procedures is shown in Figure 4.

Laboratory procedures
In a laboratory the following procedures were used to
process the samples:

1. A leaf surface area machine was used to measure
leaf areas for plastic bag samples, then the leaves
were placed in new, small brown bags with the label
of tree number, foliage type and “SLA” (because
those samples would be later be used to calculate
specific leaf area).

2. The volume of each disk was measured by
immersion.

3. The brown-bag samples and disks were placed in an
oven at 105 °C.

4. A sub-set of the wood samples for each tree was
periodically measured to determine when they had
stabilised.

5. All dried samples were weighed when the weight
had stabilised.
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Analysis

Data storage and summarisation

Data were entered into a relational database built for
the study, with tables for trees, disks and wood blocks,
forms for data entry, and several pre-designed queries
so that data could be exported to R statistical software
(R Development Core Team, 2004). Tree-level data were
then exported to R, and the ratio between subsample
dry and green weights was applied to field green
measurements of biomass pools in order to calculate the
above-ground biomass of stem wood, bark, branches,
foliage and seeds. Dry weights of these biomass pools
were summed to calculate total aboveground biomass
(AGB) of harvested trees.

Modelling individual tree AGB

With such small samples the question arose whether to
create separate modelling systems for each species or
one combined modelling system with species asa term in
the equations. The advantage of separate models would
be that relationships between components and stem
measures might be quite different between species, but
numbers of sampled trees were small especially among
large trees because they were so expensive to sample.
It was likely that models with small samples might be
overly influenced by just a few trees. To compare the
two strategies initial, stand-alone models were created
for all components and total AGB for each species
separately and for the species combined. Model mean
standard errors and r? values were compared, and also
for total tree AGB jackknife (leave one out) validations
were conducted and both fitting statistics and residual

FIGURE 4: from left to right, then top to bottom: Tree felled; high quality GPS location; Marking disks to be cut; weighing
the whole stem; disks cut; disks collected; note taking; and image of disk stained to show heartwood
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plots were examined. As shown in the results section,
combined-species models were found to be as precise as
separate ones, and were more stable when subjected to
validation.

Linear models often require transformations to
stabilise variance and make relationships linear. This
was very important for our study because relationships
tended to be curved and residuals heteroscedastic.
Consequently, scaled power transformations were used
(Equation 1):

x-1)/A Az0
log(x) A=0

X = Equation 1

where x is the variable being transformed, and A is
a parameter that varies usually between -2 and 5,
providing a range of transformed shapes. Lambda (A)
values should be chosen to make frequency distributions
of variables as normal as possible. A plot of tree AGB
versus dbh?*h (D?H) was inspected, and following
inspection both D?H and AGB were transformed using
scaled power transformations.

Linear models were fitted for the whole tree and for
each component with transformed AGB as the response
variables, and both transformed D?H, slenderness
(h/dbh) and a categorical variable for species as
independent variables. Slenderness was included
because it might represent the extent to which trees
were growing in a relatively large gap and this might
influence allocation of biomass to different components.
Models were first fitted with all possible main effects and
interactions, and then insignificant model terms, using
type 3 sums of squares, were removed sequentially.
After each removal the significance of each remaining
term was re-examined. The principle of marginality was
applied; main effect terms were retained irrespective
of their statistical significance (P<0.05) if they were
present in statistically significant interactions.

Once these models had been fitted command
nlsystemfit from the systemfit library (version 1.1)
in R (R Core Team 2013) was used to create additive
models, using ordinary least squares. Branch AGB was
set to the total AGB function minus the sum of all the
other functions to assure additivity. Scaled transformed
response variables, total AGB and AGB of components
stemwood, stem bark, foliage & seeds could only have
their best, unique A values for the transformation
included as back-transformations of the right-hand side
of the equations, which then placed all the additions in
untransformed kg of biomass. The reason for this is that
to ensure additivity the dependent variables had to be
in the same currency, and their best fit A values were all
different. This strategy retained linearity but would still
open small fitted values to possible bias because they
would have far smaller residuals than large fitted values.
To avoid this bias the models were weighted by d x h,
dividing each equation side by d x h. The steps were: 1)
Create individual, non-additive models using command
nls in R for each component model in order to provide
estimates of starting parameters, and then 2) use those
starting parameters in nlsystemfit using the ordinary
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least squares fitting option to create additive models.
After models were fitted histograms of raw residuals
were examined the ensure they were close to normal,
and then back-transformed fitted values and residuals
were used to create plots of residuals and also plots of

fitted versus actual values that were inspected for bias.

Modelling stand-level AGB and CO, sequestered
In order to model above-ground biomass and CO, per
hectare on a plot basis for E. globoidea, permanent
sample plot data used by Salekin et al. (2020) were used.
The individual tree AGB model developed in this study
was applied to each tree in every permanent sample
plot (PSP) at each time of measurement, and then
these were summed to calculate plot-level AGB at each
measurement time in each PSP. Tree heights and dbhs
in plots were then used to calculate mean top heights
at each measurement time (Mason 2019), along with
basal area per plot calculated from dbh measurements.
Basal areas and above-ground biomass sums were then
divided by plot size to put them on a per hectare basis.
AGB/ha was converted from kg into tonnes, divided by
2 to represent elemental C (Beets & Garrett 2018), and
then multiplied by 44/12 in order to represent above-
ground CO,-e/ha.

Three different equations (2-4) were evaluated as
ways to predict above-ground CO,-e/ha from basal area/
ha (G) and mean top height (MTH).

C/G=a+f*MTH Equation 2
C=a*GP*MTH" Equation 3
C = & *B1og(G*MTH) + y*SDI Equation 4

In these equations C=above-ground CO,-e/ha in tonnes,
G=basal area/ha in m?/ha, MTH = mean top height in m,
SDI=Reineke’s stand density index (Reineke 1933) and
Greek letters are fitted coefficients.

The analyses employed both linear and non-linear
mixed effects using the Imer or nlme functions in
R packages Ime4 (version 1.1) and nlme (version 3.1),
depending on the nature of the equation, with plot as
a random effect to take account of repeated measures.
Model quality was judged by inspecting plots of residuals
versus predicted values and calculating standard errors.

Estimation of above-ground biomass using LiDAR

This study combined with our report on the use of
UAV LiDAR (Ye et al. 2025) to measure above ground
biomass had potential to explore how we might
measure CO,-e stored by forest owners who register
their forest stands in New Zealand’s emissions trading
scheme (ETS). The forest measurement approach to
estimation of C sequestration is currently set up to
receive measurements of tree stem heights and dbhs
which are then used to estimate tree biomass and
carbon content. Airborne LiDAR may be a way to acquire
estimations more efficiently, but this raises the question
of whether LiDAR should be used to estimate heights
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and dbhs for the ETS, indirectly assessing biomass and
C, or alternatively tree biomass and C should be directly
assessed from LiDAR metrics.

It has become clear that LiDAR is good at measuring
tree heights, but may be relatively poor at measuring
dbhs. There are logical reasons for this:

1. A LiDAR metric called zq95, the height below which
95% of all returns come from a tree is strongly
related to tree height, and may differ only slightly
with different species due to their different shapes
at the tops of canopies (Ye et al. 2025).

2. Dbh is not easily visible from airborne LiDAR,
and although oblique LiDAR might help (Justin
Morgenroth pers. comm.), the odds are that dbhs of
many stems will be undetectable with LiDAR.

3. While foresters routinely estimate heights from trees
that have only dbh measurements in inventories,
quite commonly the dominant trees in a stand have a
wide range of dbhs but more or less the same height,
and so itis not routinely feasible to predict dbh from
LiDAR height measurements.

4. Indices of competition such as heights of and
distances to neighbouring trees, site fertility
estimates, and knowledge of stocking management
may help somewhat in estimating dbh from LiDAR
estimates of height, but these techniques have not
yet materialised.

Ye et al. (2025), using the same dataset as ours along
with LiDAR metrics for individual trees, reported on
a Partial Least Squares Regression (PLSR) model to
directly estimate AGB from LiDAR metrics. As reported
in their paper:
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“The surveys were executed using a DJI Matrice 300
RTK equipped with a Zenmuse L1 LiDAR sensor on
board. .. The survey employed a single grid flight
pattern, capturing triple returns at a sampling rate of
160kHz. The Zenmuse L1 sensorincorporatesacamera
that captures the red, green, and blue (RGB) bands.
The collected data were pre-processed using DJjI Terra
3.11.7.1 (https://www.dji.com/nz/dji-terra), which
included optimising LiDAR point cloud accuracy,
smoothing the cloud, exporting the data into the
standard format, and reconstructing an orthophoto.”

They found that a PLSR model best estimated dbh, and
a good regression model of tree height versus zq95. We
used all these models with ours in this study to compare
“indirect” and “direct” estimates of AGB from LiDAR. A
“direct” method would predict AGB from LiDAR metrics,
whereas an indirect method would involve estimation of
AGB from dbh and height that were derived from LiDAR.
This was relevant because attempts to use LiDAR for the
purposes of the ETS had focussed on models of AGB as
functions of tree dbh and height that were themselves
estimated from LiDAR.

Results

Modelling individual tree above-ground biomass
(AGB)

Agraph of AGBversus D?H is shown in Figure 5. Individual
stand-alone models of total AGB/tree for each species
were less stable during validation, particularly for E.
globoidea (residual plots not shown), and component
models were similarly precise using combined species
models (Table 3). Therefore, a combined species AGB
modelling strategy was adopted. The standard errors

Species
» E.bosistoana
e E.globoidea

40000 60000

DBH?H

FIGURE 5: AGB versus D?H by species
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TABLE 3: Mean standard errors and r? values for unconstrained models of biomass components showing values for
joint and separate models for the two species

Component Species Standard error (kg) r?
Total biomass Both 21.6 0.977
Total biomass Both, jackknife validation 23.0 0.973
Stem Both 13.7 0.978
Bark Both 3.70 0.961
Foliage and seeds Both 4.30 0.735
Branches Both 9.71 0.877
Total biomass E. globoidea 27.0 0.979
Total biomass E. globoidea, jackknife validation 34.2 0.967
Stem E. globoidea 18.3 0.981
Bark E. globoidea 4.55 0.961
Foliage and seeds E. globoidea 3.94 0.859
Branches E. globoidea 10.3 0.829
Total biomass E. bosistoana 21.3 0971
Total biomass E. bosistoana, jackknife validation 22.8 0.967
Stem E. bosistoana 14.0 0.962
Bark E. bosistoana 3.37 0.959
Foliage and seeds E. bosistoana 3.45 0.894
Branches E. bosistoana 7.20 0.940
shown in Table 3 are mean standard errors after back 22 coefficients simultaneously (Table 4). Plots of
transformation, and so note that, with heteroscedastic residuals versus fitted values and fitted values versus
models, larger standard errors would be attached to actual values are presented in Figures 7 to 15. One outlier
larger estimates and smaller ones to smaller estimates. from alarge, spreading tree with many seed capsules was
Residuals for the combined species model of total AGB detected in the foliage and biomass component model
along with jackknife (Tukey 1958) residuals are shown but, as this outlier was real and most other estimates
in Figure 6. The nlsystemfit procedure involved fitting unbiased, we left it in the model.
50- ' ——
st . # Species
© s.o . * E. bosistoana
3 .‘,::2: <Lt . + E. globoidea
§ O—é‘:‘ - '_‘ - ] Model
5 © Full
avy . : + Jackknife
4
)
i
-50-
0 200 400 600 800

Predicted AGB (Kg/tree)

FIGURE 6: Residual versus predicted values of AGB/tree by species, with the full model fit shown blue and the jackknife
residuals in red
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TABLE 4: Model coefficients and standard errors (in parentheses) and I values

Model Intercept DZH Species h/d D2H*Spp D2H* h/d*
A=0.24 (10or0) A=-1.27 h/d Spp

Total AGB 0.05769973  0.25482753 0.82093885 -0.26895444 -0.05786229

A=0.17 (1.110e-09) (5.958e-11) (8.553e-10) (1.530e-09) (6.105e-11)

Stem -1.39298307 0.26576073 0.62687770 -0.04434272

A=0.18 (2.259e-09) (8.892e-11) (2.818e-09) (1.207e-10)

Bark -2.61727152 0.30217405 1.28805265 1.87233580 -0.11871546 -0.02343348 -1.79600684

A=0.35 (9.572e-09) (9.572e-09) (1.225e-08) (1.509e-08) (9.962e-10) (5.688e-10) (1.917e-08)

Foliage & seed -0.83831203 0.15436852 0.62174469 -0.01437024 -0.01749251 -0.02811382

A=0.42 (8.116e-09) (6.763e-10) (1.654e-09) (1.311e-08) (6.064e-10) (6.380e-10)

Modelling plot-level CO,-e/ha http://www.treesandstars.com/euan/egloboidea.htm

Equation 4 provided the least biased and most precise
estimate of CO,-e/ha by a wide margin, and so only the
results for that model are reported here. The standard
error was 1.92 tonnes CO,-e/ha, and the residuals
were relatively unbiased (Figure 16). Table 5 shows
the model’s fixed effect coefficients. Note that when
applied to plots within the same range but not in the
fitting set (i.e.: using just fixed effects) this model would
be less precise, with a standard error of approximately
14 tonnes CO,-e/ha. Using the model outside the range
of Salekin et al’s (2020) growth and yield model would
result in an extrapolation and even greater errors. This
model was applied in an on-line, plot-level growth and
yield simulator for E. globoidea which can be found at:

600-

N
o
o

N
o
Q

Predicted AGB (Kg/tree)

0 200
Actual AGB (Kg/tree)

FIGURE 7: Actual versus predicted values of AGB/tree by species for the nlsystemfit model

400

An output of the model can be seen in Figure 17.

Estimation of above-ground biomass using LiDAR
The indirect pathway for estimating AGB/tree from
LiDAR was more biased in this study than direct
estimation from LiDAR (Figures 18 and 19).

Discussion

Many previous studies have used additive models to
represent biomass of individual trees (Bi et al. 2004;
Bi et al. 2010; D. H. Zhao et al. 2015; Daryaei & Sohrabi
2016; Fu et al. 2016; Vonderach et al. 2018; Wang et
al. 2018; D. Zhao et al. 2019; Levine & Valpine 2020;

Species
E. bosistoana
« E. globoidea

600


http://www.treesandstars.com/euan/egloboidea.htm

Mason et al. New Zealand Journal of Forestry Science (2025) 55:17

60-

30-

Residual

0 100 200 300 400 500

Predicted stem biomass (Kg/tree)

FIGURE 8: Residuals of the predicted stem biomass
model fiited with nlsystemfit
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FIGURE 10: Residuals of the bark biomass model fitted
with nlsystemfit
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FIGURE 9: Fitted versus actual model for stem biomass

Cuevas Cruz et al. 2022). What is new about this study
is combining scaled power transformations of biomass
equations (Zheng et al. 2015) with weighted regression
to avoid bias, the inclusion of h/dbh to help distinguish
spreading trees, and also providing biomass equations
for two species whose biomass has not been reported
previously and that are becoming important in New
Zealand.

A small function has been created in R to report AGBs
for any tree within range of the data by its components.
The command and output look like this:

> predBiomass(25,24,0)

Biomass (kg) %

Stem 182.77589 60
Bark 54.72537 18
Foliage & Seed 14.927295
Branch 53.4221317

Total 305.85068 100

o
<

60-

Predicted bark biomass (Kg/tree)

0 25 50 75 100
Actual bark biomass (Kg/tree)

FIGURE 11: Fitted versus actual bark biomass values for
the nlsystemfit model

In this case the dbh = 25 cm, the height = 24 m, and the
zero denotes E. bosistoana. The function is available from
the corresponding author.

The models developed during this study have already
contributed greatly to the objective of the wider SLMACC
project by providing tools to estimate CO,-e contents of
trees and stands of E. globoidea and trees of E. bosistoana
in Marlborough, and also a test dataset for investigating
whether or not LiDAR can be used to measure AGB of
trees and stands. The data collected will be further
analysed to:

e create a set of compatible pool-level ABG equations
for the two species
e create models to estimate leaf area index

e improve taper and volume equations that include
estimates of heartwood (Boczniewicz et al. 2022)
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FIGURE 12: Residuals of the foliage and seeds nlsystemfit
models
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FIGURE 14: Residuals of the branch biomass nlsystemfit
model
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FIGURE 13: Fitted versus actual values of the foliage and
seeds model

¢ investigate of patterns of wood basic density within
stems for the two species

¢ enable projections for case studies that are the focus
of the project of which the study reported here is a
part.

A factor pertinent to whether LiDAR should be used
to measure AGB directly from LiDAR or indirectly via
stem measurements from LiDAR is that for young trees
stem biomass is a minority proportion of total biomass,
and even for large trees, in the study described here,
~15% of biomass was in foliage and branches, but this
percentage was highly variable. Therefore, LiDAR may
be useful at helping us to determine a contribution of
foliage and branches to biomass which would not be
well estimated from only stem measurements. Moreover,

150-

100-

50-

Predicted branch biomass (Kg/tree)

0 50 100 150 200
Actual branch biomass (Kg/tree)
FIGURE 15: Fitted versus actual values of the branch
biomass model

from a modelling perspective we should expect that
indirectly chaining together several tree models to
estimate AGB might result in biased estimates. In this
study we created a very good model of biomass versus
D2H. The implication is that directly estimating AGB with
LiDAR may be a better strategy than pursuing height
and dbh estimates from LiDAR and then using dbh and
height to predict AGB. Moreover, as we are interested in
stand-level C content for the ETS, individual tree models
may be inferior to models that measure C directly from
LiDAR metrics for the whole stand.

Conclusions

Individual tree AGB of E. globoidea and E. bosistoana was
found to be well estimated from an equation employing
D?H, h/dbh, and species as independent variables along
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FIGURE 16: Residuals of the plot-level estimation of
CO,-e using equation 4, with plot as a random effect

with their interactions. The R? value was 0.98 and the
average standard error was 22 Kg, although the standard
error when using the model would be smaller for small
trees and larger for large trees. Compatible, additive
models of tree components were well estimated when
all models were fitted simultaneously, providing very
high correlations with actual values.
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TABLE 5: Fixed effect parameters for Equation 4 after
fitting to PSP data

Parameter Estimate Std. error  Pr(>|t])
a 0.2527384  9.761E-02  0.0122
b 0.7389601  1.640E-02  <2.00E-16
g 2.939E-04 1.836E-05 <2.00E-16

Plot-level estimates of above-ground CO,-e were well
fitted to an exponential model that employed MTH, G
and SDI as independent variables, and had a standard
error when only fixed effects were used of approximately
15 tonnes CO,-e/ha. This model has been incorporated
into an on-line plot-level growth and yield simulator that
is freely available to the public.

Direct estimates of AGB from LiDAR were found to
be less biased than indirect estimates that used LiDAR
estimates of height and dbh and then employed height
and dbh to estimate AGB from a model.
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FIGURE 18: Residuals of direct (red) and indirect (blue)
estimates of AGB/tree from LiDAR
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