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Abstract

Background: Studies show that forest uniformity has a direct correlation with productivity, and uniformity measures can
serve as indicators of the silvicultural quality of plantations. In this context, this work aimed to determine uniformity and
survival in young Eucalyptus sp. plantations using attributes obtained from passive sensors boarded on Unmanned Aerial
Vehicles (UAV).

Methods: Tree height was underestimated by the UAV compared to those measured in the Quality Forest Inventory (QFI).
Thus, a correction factor applied to size classes was proposed to estimate these heights. The plantations’ uniformity was
obtained through the uniformity indices (UI). The Uls were spatialised and integrated, resulting in two uniform surfaces,
with and without planting failures.

Results: The UAV survival estimates did not show significant differences compared to the inventory estimates at the 1% or
the 5% significance levels. The classification of uniformity surfaces showed that the Eucalyptus saligna Sm plantation was

the least uniform compared to the E. grandis W. Hill x E. urophylla S. T. Blake plantations.

Conclusions: Measures of survival and uniformity by the UAV can be jointly employed to generate uniformity surfaces and

to determine the areas that need more attention from silvicultural management.

Keywords: Forest uniformity, Unmanned Aerial Vehicles, Silvicultural management, Spatial analysis

Introduction

In Brazil, the first commercial plantations of forest
species were established as an alternative for the wood
supply that came from natural forests, especially the
Atlantic Forest (AGEFLOR 2023). Currently, according
to IBA (2022), in Brazil, forest plantations total about
9.93 million hectares and absorb some 1.88 billion tons
of carbon dioxide (CO,) from the atmosphere.

The area of commercial plantations of the genus
Eucalyptus sp. has been increasing every year, especially
due to the establishment of new plantations (Sanquetta
et al. 2018; IBA 2019). This highlights the interest in
species of this genus in the Brazilian forestry sector,

which is internationally recognised for its short rotations
and the productivity of its plantations.

The productivity of Eucalyptus spp. plantations
has increased in recent decades, reaching
38.9m*hayear'in 2021, and maintaining this growth is
a challenge for the forestry sector (Gongalves et al. 2014;
IBA 2022). Among the factors related to productivity is
the structural uniformity of plantations, a factor that has
been positively correlated with higher forest productivity
(Binkley et al. 2010; Stape et al. 2010; Ryan et al. 2010;
Aspinwall et al. 2011, Hakamada et al. 2015a).

The structural uniformity of the stand reflects the
environmental conditions in which the plantation grows,

© The Author(s). 2025 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.



http://creativecommons.org/licenses/by/4.0/),

Avelhaneda Mallmann et al. New Zealand Journal of Forestry Science (2025) 55:9 Page 2

the quality of the genetic material employed, the quality
of the silvicultural activities applied, and the interactions
among these factors (Hakamada et al. 2015a; Soares
et al. 2016; Sun et al. 2018). It is important that the
determination of structural uniformity be performed
early in the first months of planting, as uniformity
decreases with the advancing age of the forest stand
(Hakamada et al. 2015b; Soares et al. 2016; Sun et al.
2018).

Information about the uniformity of plantations
provides greater detail about productive areas, serving
as an indicator of the adequacy of resource supply for
growth (Hakamada et al. 2015b, Binkley et al. 2010;
Stape et al. 2010) and allowing forest managers to have
a broader view of the stand structure. This detailed
understanding enables the identification of areas that
require greater attention from silvicultural managers and
interventions needed in the early years of the plantation
(Binkley et al. 2002; Binkley et al. 2010; McGown et al.
2016; Resende et al. 2016; Yaiiez et al. 2017; Sun et al.
2018), ensuring the greatest structural uniformity so
that the stand can achieve its potential productivity (Luu
etal. 2013).

Uniformity can be estimated through uniformity
indices (Hakamada et al. 2015a; McGown et al. 2016;
Yénez et al. 2017; Hentz et al. 2018). The calculation of
these indices is usually done through sampling data of
variables obtained by a conventional forest inventory.
However, for large areas with difficult access, the
collection of these data can become a costly activity or
even unfeasible from a practical and economic point of
view.

Remote sensing techniques have been increasingly
employed in the forest sector for generation of qualitative
and quantitative data. The use of unmanned aerial
vehicles (UAV) has been shown to have potential as a
tool to conduct forest inventories due to the low cost of
operation of this platform in environmental monitoring,
the potential to reduce the time to obtain information
from the plantations, the possibility of high accuracy of
the results, the high spatial and temporal resolution, as
well as the high flexibility in the acquisition of images
(Corte et al. 2020; Zhang and Kovacs 2012; Salami et al.
2014; Torresan et al. 2017).

This research differs from other studies due to its
specific focus on employing data collected by passive
sensors mounted on UAV to calculate survival and
uniformity indices in young Eucalyptus sp. plantations,
whereas most previous research utilised conventional
forest inventory methods. Although the existing
literature recognises the potential of UAV for forest
inventories, there is a notable scarcity of studies in
Brazil that integrate UAV technology with uniformity
indices, as highlighted by Hentz et al. (2018). By
spatially integrating the survival and uniformity indices
obtained from UAV data, this research aims to enhance
the understanding of plantation dynamics in a way that
traditional methods may not capture.

The following study hypothesis was established: “The
data collected by passive sensors onboard a UAV can be
employed to calculate survival and uniformity indices

in young plantations of Eucalyptus species as a form of
integration or replacement of conventionally applied
techniques”. This work aims to: a) evaluate the accuracy
of using data collected by passive sensors mounted on
UAV to express survival and uniformity; comparing
the data collected by UAV and data collected by a
conventional forest inventory; e b) spatially integrate
the survival and uniformity indices calculated from data
collected by UAV to obtain uniformity surfaces.

Methods

Area of study

The study sites were in three young plantations of
Eucalyptus sp. which were selected and made available
by Klabin S.A. Klabin S.A. is a forestry company and one
of the largest producers and exporters of paper and pulp
in Brazil. The study was conducted in the municipalities
of Ortigueira and Telémaco Borba, both located in the
state of Parand, southern region of Brazil. According to
the Kdppen-Geiger classification, the climate is Cfa, with
average annual temperature 18.4 °C and average annual
rainfall around 1,378 mm (Climate-Data.Org 2024).
Plot B corresponds to a monoclonal plantation of the
species Eucalyptus saligna Sm., and plots A and C are
monoclonal plantations of E. grandis W. Hill x E. urophylla
S. T. Blake. Figure 1 shows the location of the three forest
plantations used in this study, with coordinates in UTM -
SIRGAS 2000, zone 22 S.

The productive area of plantation A was 14.75
hectares, with soils of the Oxisol and Ultisol classes. In
plantation B, the productive area was 38.39 ha, with a
predominance of Inceptisol soils. Plantation C presented
a productive area of 54.19 ha on Oxisol soils. When the
study was carried out, all plantations were approximately
one year old and with overlapping canopies in the row
and partial overlapping between rows.

Data collection - Quality Forest Inventory (QFI)

The field data were collected in the Quality Forest
Inventory (QFI), which is usually carried out by Klabin
S.A. when the plantations reach one year of age. The
plots were randomly allocated to the plantation and
were rectangular in shape, composed of 4 rows with
5 trees each, totalling an average of 20 trees per plot. The
spacing between trees was 1.8 m x 3.3 m for plantations
B and C, and 1.75 m x 3.42 m for plantation A. Because
the configuration of the plots was determined by 4
rows x 5 plants, the plots for plantation A had an area of
120 m? and the plots for plantations B and C had an area
of 119 m*.

In the field data collection (QFI), all trees in each plot
were measured. In plantation A, 61 trees were sampled
in 3 plots, in plantation B, 261 trees in 13 plots, and in
plantation C, 222 trees in 11 plots.

In the QFI, the trees in the plots were measured for
their diameter at breast height (DBH), 1.30 meters from
the ground, and total height (H). The DBH was measured
with a metric measuring tape, and H was measured with
a Haglof Vertex IV® hypsometer, at a distance of 20 m
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FIGURE 1: Eucalyptus plantations located in State of Parana, Brazil.

from the tree. In addition, the geographic position of the
plot was collected with a Garmin 62CSX GPS. According
to the owner’s manual of the GPSMAP 62 series, the
margin of error for exact location is + 12 ft (or 3.66 m).

Data collection

The flights were performed with the platforms and
sensors provided by Klabin S.A. (Table 1). In plantation
A and C, the Parrot Disco platform was employed, with
the Sequoia multispectral sensor, and in plantation B the
Phantom platform with the RGB sensor was employed.
The use of different platforms did not interfere in
obtaining the cartographic products, since only the RGB
bands were employed in image processing for both
Sensors.

The acquisition of the UAV aerial images was
performed on days with clear skies within a flight window
between 9 am and 3 pm. The flight path employed was
simple acquisition, and the flight height employed was
120 meters, respecting the current legislation of the
Brazilian National Civil Aviation Agency.

Data processing

Stage 1: The raw images from the UAV flights were
imported and processed in PiX4D software. As a result
of the processing, the following cartographic products
were obtained: Digital Elevation Model (DEM); Digital

Surface Model (DSM); and orthophoto mosaic, also
called orthomosaic.

Stage 2: In the GIS environment (ArcMap 10.4.1), with
the Raster Calculator tool, the following band math was
performed: “DSM - DEM”, using the models obtained
in Stage 1. The result of the subtraction (DSM - DEM)
generated the cartographic product Canopy Height
Model or Normalized Digital Surface Model (CHM).

Stage 3: In GIS environment, the delimitation
of rectangular plots, as well as their trees, was
established through the vectorisation performed
by photointerpretation on the orthophotos of each
plantation, generated in Stage 1. The allocation of these
plots occurred randomly, characterising the simple
random sampling system. These plots, vectorised by
photointerpretation, were divided into two groups, as
follows:

Sampling V1: Plots with the same location and
size of the plots coming from QFI, employed in the
comparison of the uniformity indices UAV x QFI.

Sampling V2: Plots that did not have the same location
as the QFI plots, which were employed to calculate
uniformity indices and spatialisation of uniformity
surfaces.
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TABLE 1: Information on UAV flights over Eucalyptus sp. plantations.
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Information Plantation A Plantation B Plantation C
Date of flight May/19 Nov/18 Nov/18
Flight height (m) 120 120 120
Platform Parrot Disc Phantom Parrot Disc
Sensor Sequoia RGB Sequoia
Spatial resolution (cm) 4.5 3.0 4.5
Coverage (%)! 70x70 70x70 70x 70

Lateral and longitudinal coverage of the images.

The variation in the number of plots in each plantation in
the QFI and V1 sampling is linked to the number of QFI
plots made available by Klabin S.A., and the variation in
the number of plots in the V2 sampling is linked to the
size of each plantation (Table 2).

Stage 4: In the plots (UAV) that had their respective
plots in the field (QFI), the canopy delineation was
performed by photointerpretation, and then their areas
were calculated.

Stage 5: In GIS environment, with the Extract Values to
Points tool the tree heights of each plot were extracted,
using the tree position and the CHM.

Stage 6: The allocation of the planting fault points
within the total area of each plantation was conducted
by vectorisation of circular plots of 1 hectare that
coincided with the central location of the field plots (QFI)
and identification of the points of plantation failure.
Planting gaps were defined as the absence of trees in the
planting line, and their identification was performed by
photointerpretation.

Thus, through the Stage 1 to Stage 4 work sequence,
the following attributes were extracted: height (H, m);
canopy area (Ca, m?); failure in plots (absence of trees on
the plot) (Fp, n ha'); and failure census (count of failures
in the area) (Fc, n ha') (Figure 2).

An exploratory analysis of the data revealed that,
in comparison to the heights from the QFI, the heights
extracted by the UAV presented a systematic error with
a tendency to underestimate the measurements. To
overcome this limitation, the heights extracted by the
UAV were adjusted based on plots sampled in the field.
For this, the correction factors were obtained per size
class of height (R, Equation 1) and the correction of UAV
heights was performed using Equation 2.

TABLE 2: Number of plots employed in plantations of

Eucalyptus sp.
Sampling Plantation Plantation Plantation
A B C
QFI and 3 13 11
Sampling V1
Sampling V2 20 30 30

FIGURE 2: Working sequence for extracting UAV attributes.
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Where: R, is class j ratio; h,, is the height obtained from
QFlin class j, and h, is the height extracted by the UAV in
classj. The term h;, . isthe height extracted by the UAV,
corrected; is the height extracted by the UAV, and is the
ratio obtained for the size class j.

Survival

The estimation of survival of the UAV and QFI plots
was performed using the ratio model, demonstrated by
Péllico Netto and Behling, (2019), expressed in Equation
3.

R‘ — E?:1 Yi (3)

n .
i=1%i

Where: R is the estimated angular coefficient (ratio); x,
is the expected number of trees per hectare obtained in
plot i; y, is the real number of trees per hectare in plot i.

To verify the accuracy of the survival values generated
by the UAV approach in relation to the QFI, the calculation
of the confidence interval (CI) was performed. The
confidence interval presents the amplitude of the average
for the data, generated from the lower and upper limits
(Péllico Netto and Brena 1997). For this, the survival per
hectare was calculated (Equation 4) along with the CI for
the UAV approach and for the QFI (Equation 5):

5 o hafx (4)

n
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Where: R is the estimated angular coefficient (ratio); x,
is the expected number of trees per hectare obtained
in plot i; Y is the average of the estimate of trees per
hectare; n is the number of plots. It is the trust interval;
Y is the average of the trees estimate per hectare; t is the
value of t-Student statistics at a significance level () of
0.01 and n™* degrees of freedom, and s ? is the estimated
variance of the number of trees per hectare.

To determine whether the survival estimates obtained
by the UAV approach were satisfactory, the following
assumptions were applied:

H; Y =Y indicates that the estimates generated
by the UAV approach do not differ statistically
from the QFI estimates. In this case, the average
number of trees per hectare estimated by UAV
should be within the confidence interval of the

QFL.

H:Y #Y indicates that the estimates generated
by the UAV approach differ statistically from the
QFI estimates. In this case, the average number
of trees per hectare estimated by UAV is outside
the confidence interval of the QFI.

Kernel Failure Surface L

After H, was accepted (H;: Y, = Y)), the Kernel Failure
Surface (FSK) was generated for each plantation. This
failure surface (Layer) had as reference the failures
identified in the total area of the plantations (Census).

For this, the Kernel method was done using the Kernel
Density tool in a GIS environment. The input parameters
employed were cell size 0.5, search radius of 75 for
plantations A and B and 100 for plantation C, and the
area unit hectares to obtain the concentration of faults
per hectare.

Then, using a raster calculator tool, the fault values
were converted to a scale from 0 to 1 (standardisation),
and the closer to 1, the lower the number of faults in the
area, according to Equation 6.

= Ymax~Xi 6
xlp Xmax ( )

Where: X, is the estimated value of standardised failures
(0 to 1) at the pixel; x___is the estimated maximum value
of failures obtained at the Kernel surface, in hectares;
and x, is the estimated value of pixel failure at the Kernel
surface, given in hectares.

Uniformity measures

To obtain the uniformity indices (UI) of the plantations,
the following indices were calculated in the R software
environment: Coefficient of Variation in percentage
(VC,); Gini coefficient (G) and accrued percentage of the
densitometric variable of interest (50%) of the smaller
trees planted (PV50) and their variations such as PV25
and PV75, with 25% and 75% of the smallest planted
trees, respectively.

The PV variations were calculated using 25%, 50%,
and 75% of the data, according to Equations 7, 8, and 9,
respectively, taking into account the plantation failures.
When calculated with the height (H) values, this index
was called PH and when calculated with the canopy area
values (Ca), it was called PCa.

i .
pV25, = Ze (7)
Xl xi
n
PV50, = 2L (8)
Ziilxi
ﬁ
E
V75, = ek )
Zl’:Jlxl
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Where: PV25, is the accrued percentage of the
densitometric variable of interest (H or Ac) of the 25%
smallest trees planted from plot j; PVSO]. is the accrued
percentage of the densitometric variable of interest (H
or Ac) of the 50% smallest trees planted from plot j;
PV75. is the accrued densitometric variable of interest
(H or Ac) of the 75% smallest trees planted from plot j;
x, is the value of the densitometric variable of interest; n,
= number of planted trees arranged in ascending order
(from the smallest one to the biggest one) at plot .

For calculating the coefficient of variation percentage
(VC,) and the Gini coefficient (G) all the data bank
measures were employed, except the plantation failures.
For calculating G (Equation 10) the ineq statistic package
Zeileis et al. (2009) from the R software was employed R
Core Team, (2022), and Equation 11 was employed for
obtaining the VC,:

i+1
s;
VCyj = ;;100 (11)

Where: Gj is the Gini coefficient of the densitometric
variable of interest in plot j; A = accrued rate of the
number of trees from plot j; DI.]. accrued rate of the
value of the densitometric variable of interest from plot
J; VC%]. is the variation coefficient of the densitometric
variable of interest at plot j; s, is the standard deviation
of the densitometric variable of interest at plot j; X]. is the
average of the densitometric variable of interest in plot}.
For further assessment of the indices, knowing the
variation range of each index, standardisation of its
values was performed using the expressions described
in Table 3, so that the resulting values were on the same
0 to 1 scale, considering that the closer the value to 1, the
higher the uniformity.
Where: [U is the uniformity index; upper limit
corresponds to the maximum uniformity of the index;
lower limit is the value corresponding to the inexistence
of uniformity; X, standardised index value (0 to 1) at the
plot; x__ is the maximum value of the index obtained
in the plantation’s plots, and x, is the value of the index
obtained in the plot.

TABLE 3: Information on UAV flights over Eucalyptus sp.
plantations.

IU Lower Upper Standardisation
limit limit

PV25 0 0.25 X, = 4x,

PV50 0 0.50 X, = 2x,

PV75 0 0.75 X, = 4/3*x,

G 1 0 X, = 1-x,

Ve, e 0 X, =, X/,

Uniformity surfaces

The uniformity indices of the rectangular plots of QFI
and UAV (Sampling V1) were calculated, based on the
variable height (H) (QFI) and the variables corrected
height (H_ ) and canopy area (Ca) (UAV). The uniformity
indices were divided into 3 plot frequency classes,
and the number of classes was arbitrarily defined. To
compare the frequency of plots per class resulting from
the UAV approach with the QFI, the chi-square (x?) test

was employed (Equation 12).

X2 = 3(Fo—Fe)? (12)

Fe

The chi-square (x?) tests the following hypotheses:

(1) H;: F, = F, the UAV plot frequency is not
different from the QFI plot frequency when
p-value =2a. Thus, the methods do not differ
statistically at the 5% significance level (a
=0.05), and

(2) H: F,# F , the UAV plot frequency is different
from the QFI plot frequency when p-value <a.
Thus, the methods are statistically different at
the 5% significance level (o = 0.05).

Then, the remaining heights were corrected for sampling
- V2 plots. The uniformity indices PH25, PH50, PH75,
VC,, and G were calculated and standardised. The
standardised uniformity indices were imported into
GIS software, where, by means of the Inverse Distance
Weighting (IDW) tool, the uniformity surface of each
index for each plantation was generated.

Using the raster calculator tool, a map algebra was
performed, in which the layers of each index were
integrated to generate a single Uniformity Surface
(US, Equation 13) for each plantation. The Uniformity
Surface with failures (USf, Equation 14), which considers
the distribution of the failures in the plantation, was
determined by adding the standardised Kernel Failure
Surface (FSK) to the uniformity surface (US).

Us = Z=tl (13)

n

_ @ Ul)+Fsg (14)
Usp = =52

Where: US is the uniformity surface from the integration
of indices PH25, PH50, PH75, VC%, and G; Ul is the
uniformity index; US,is the uniformity surface from the
integration of indices PH25, PH50, PH75, VC%, and G and
the FSK; UI is the layer of uniformity index i; FSK is the
layer corresponding to the Kernel standardised failure
surface; and n is the number of layers.

To determine the degree of uniformity of the
plantings the two uniformity surfaces generated (US and
USf) were classified into three uniformity classes: low,
medium, and high (Table 4).
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TABLE 4: Uniformity classes employed to classify the
uniformity surfaces of the plantings.

Class Cl1-L C2-M C3-H
Description Low Medium High
Range <0.65 0.65-0.75 >0.75
Results

Survival

Survival estimates by inventory and UAV are shown in
Table 5, \ivhere: Y is the average of trees estimated per
hectare; R is the estimated angular coefficient/ratio; 52{,
= variance of the estimated number of trees per hectare;
§, = standard error of trees estimate per hectare; Syx%is
the standard error of the estimate in percentage; I is the
trustinterval (trees/ha); F, is the failure percentage; and
S,, is the survival percentage. These survival estimates
were obtained by the ratio model Péllico Netto and
Behling, (2019) and suggest that:

In Plantation A, with the UAV survey, the
survival estimate was 92.9% and with the QFI,
the survival was 100%, therefore, hypothesis
(Y, =Y ) was rejected, showing that statistically
for this plantation, there was a difference
between the methods.

Plantation B presented a higher survival
percentage, both from estimates by the UAV
and in the field inventory estimates, 96.5% and
98.5%, respectively. The UAV estimation of the
average oflive trees per hectare was 1,626, within
the confidence interval (I) of the QFI, which was
1,659 + 44. Thus, hypothesis H  was not rejected,
showing that, for this plantation, the estimations
by both methods did not statistically differ.

Plantation C presented 94.6% and 93.8%
survival, for estimates of QFI and UAY,
respectively. The average of live trees per hectare
estimated by the UAV was 1,580 and it was within
the trust interval of the field inventory (1,593 *
121). Thus, hypothesis H, was not rejected, since
the estimates did not statistically differ.

TABLE 5: Survival estimates by inventory and UAV.

Page 7

Uniformity

The y? test revealed that there was no difference between
the indices PV25, PV50 and G, calculated with the height
(QFI) and the variable canopy area (UAV). Thus, for these
cases, the hypothesis H: F = F was notrejected, showing
there was no significant difference between these
indices (Table 6). When we compared the uniformity
indices calculated with H (QFI) and H__ (UAV), there
was no significant difference between the methods in all
indices (PV25, PV50, PV75, VG, and G), where: NS is not
significant; S is significant. PH25, PH50, and PH75 are
the accrued height percentages in 25%, 50%, and 75%
of the smaller trees planted; PCa25, PCa50, and PCa75
are the accrued percentage of the canopy area in 25%,
50% and 75%, of the smaller trees planted; VC% is the
coefficient of variation in percentage, and G is the Gini
coefficient.

The application of height correction in Sampling
V2 resulted in an increase in the standard deviation of
the corrected variable in all plantations. However, the
mean value and maximum and minimum values of the
corrected heights were similar to those obtained from
the field inventory (QFI) (Table 7), where: H is the height
(m); H__ is corrected height; Deviation is the standard
deviation of the variable.

Thus, the corrected heights were employed to calculate
the uniformity indices that showed no difference by the
x? test: PH25, PH50, PH75, VC,, and G (Table 8), where:
Min is the minimum value of the index; A is the average
value of the index; Max. is the maximum value of the
index; D is the standard deviation of the index. PH25,
PH50, and PH75 are the accrued height percentages in
25%, 50%, and 75% of the smaller trees planted; VC%
is the coefficient of variation in percentage, and G is the
Gini coefficient.

Figure 3 presents the uniformity surfaces US and USf
obtained for the three forest plantations targeted in this
study, where the US were obtained based on Equation 13
and the USfwere obtained based on Equation 14. The US
and USfwere classified into three uniformity classes: Low
when the values were lower than 0.65 (red), Medium for
values within the range of 0.65-0.75 (yellow), and High
when the values were higher than 0.75 (green).

Figures 3-a, 3-¢, and 3-e correspond to the US without
planting failures for plantations A, B, and C, respectively.
Figures 3-b, 3-d, and 3-f correspond to the USf, obtained
for plantations A, B, and C, respectively. Thus, the US and

Parameter QFI UAV
Plantation A Plantation B Plantation C Plantation A Plantation B Plantation C

Y; 1,670 1,659 1,593 1,551 1,626 1,580

R 1.00 0.98 0.95 0.93 0.97 0.94
A\ 0 216 1,471 128 23 177

S, 0 15 38 11 5 13

™ 0.0% 2.7% 7.6% 7.2% 0.9% 2.7%

I 1,670 1,659 + 44 1,593 + 121 1,551 +112 1,626 £ 14 1,580 + 42
F, 0 1.5 5.4 7.1 3.5 6.2
S 100 98.5 94.6 92.9 96.5 93.8
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TABLE 6: Result of y? test using the plot frequencies in the uniformity classes of the plantation uniformity indices.

Index QFI x UAV p-value Test Index QFI x UAV p-value Test
PH25 x PH25 0.3055 NS5% PH25 x PCa25 0.2203 NS 5%
PH50 x PH50 0.7236  NS5% PH50 x PCa50 0.6437 NS 5%
PH75 x PH75 0.1023 NS5% PH75 x PCa75 0.0294 S5%

VC,, x VC,, 0.1202 NS5% VC,, x VC,, 0.0110 S5%
GxG 0.5524 NS5% GxG 0.4005 NS 5%

TABLE 7: Descriptive statistics of the height variable extracted from UAV images, before and after correction.

Statistics H (m) QFI H (m) UAV H__ (m) UAV
A B C A B C A B C
Minimum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Average 6.10 5.68 5.01 3.04 1.94 1.59 538 6.05 4.66
Maximum 8.10 7.10 7.00 7.12 7.60 3.89 946 16.63 8.84
Deviation 2.14 0.94 1.38 2.04 1.69 0.95 2.66 3.56 1.98

TABLE 8: Descriptive statistics of the uniformity indices before and after the standardisation.

Plantation Index Min A. Max. D Min. A. Max. D
A PH25 0.00 0.20 0.23 0.07 0.00 0.56 0.93 0.30
A PH50 0.19 0.38 0.48 0.09 0.38 0.76 0.95 0.17
A PH75 0.49 0.65 0.73 0.07 0.65 0.87 0.98 0.09
A VC,, 3.65 18.89 5945 16.42 0.39 0.80 0.96 0.17
A G 0.03 0.16 0.43 0.12 0.57 0.84 0.97 0.12
B PH25 0.00 0.10 0.22 0.07 0.00 0.39 0.88 0.28
B PH50 0.04 0.30 0.46 0.01 0.08 0.60 0.91 0.20
B PH75 0.34 0.56 0.70 0.09 0.45 0.75 0.94 0.12
B VC,, 5.62 45.06 77.36 18.11 0.20 0.53 0.94 0.19
B G 0.03 0.28 0.57 0.13 0.43 0.72 0.97 0.13
C PH25 0.00 0.12 0.21 0.07 0.00 0.48 0.85 0.29
C PH50 0.06 0.35 0.44 0.10 0.12 0.70 0.89 0.20
C PH75 0.26 0.63 0.71 0.09 0.35 0.84 0.94 0.12
C VC,, 8.53 23.02 96.73 18.46 0.00 0.76 0.91 0.19
C G 0.05 0.20 0.61 0.13 0.39 0.80 0.95 0.13

USf show differences in their presentation, as the former
does not consider planting failures in its calculation,
while the latter does.

For each of the plantations, the descriptive statistics
of the uniformity surface (US and USf) are presented
in Table 9, where: US is the surface with the bands’
involving the average of all calculated indices; USf is
the bands’ calculation involving the uniformity indices
average and the standardised Kernel failures surface;
Min is the minimum value at the surface; A is the average
value at the surface; Max. is the maximum value at the
surface; D is the standard deviation of the values at the
surface.

The area occupied by each uniformity class is
presented in Table 10, where: US is the surface with the
bands’ calculation involving the average of all calculated

indices; USf is the bands’ math involving the uniformity
indices average and the standardised Kernel failures.
According to the US, plantation A showed the highest
percentage of the uniform productive area, 59.94%,
followed by plantations C and B, with 37.34% and
0.52%, respectively. Plantation A was classified as a
high uniformity plantation (C3), plantation C, medium
uniformity (C2) and plantation B, low uniformity (C1).
When considering USf, plantation A remained
with the highest percentage of uniform productive
area (33.55%), followed by plantations C and B,
with 24.35% and 0.49%, respectively. Plantation
A was now classified as a medium uniformity
plantation (C2), and plantations C and B remained
with the same classification, C2 and C1, respectively.
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TABLE 9: Descriptive statistics of the uniformity surfaces.

Page 10

Statistics uUs uUsf
Min. A Max. D Min. A Max. D
A 041 0.77 0.95 0.078 042 0.71 0.89 0.08
B 0.24 0.6 0.92 0.068 0.29 0.61 0.89 0.07
C 0.17 0.72 0.90 0.062 0.25 0.70 0.85 0.07
Discussion plantations based on images obtained from a passive

Remotely piloted aircraft systems (UAV) have emerged as
innovative tools for the remote and efficient acquisition
of dendrometric data (Silva et al. 2015). Among the main
advantages of using UAV are the diversity of methods,
platforms, and sensors available for data collection,
allowing for greater flexibility and adaptability to the
specific conditions of each study. These technologies
also enable the collection of information in hard-to-
reach areas, where conventional approaches could
become unfeasible or costly. Furthermore, the significant
reduction in the costs of acquiring high-definition
images, combined with the ability to obtain data with
high spatial and temporal resolution, represents a
considerable advancement compared to traditional
forest inventory methods (Lima Neto et al. 2012; Banu
etal. 2016; Almeida et al. 2021). However, it is essential
to emphasise that flight parameters and the quality of
the generated cartographic products can influence the
accuracy of the extracted attributes, especially regarding
tree height.

In this study, the cartographic products obtained
from UAV were initially used to assess the survival of
the analyzed plantations and to obtain variables such
as crown area and tree height. The results showed that,
for plantations B and C, the survival estimates obtained
from UAV were within the confidence interval calculated
for the QFI. Plantation B had a survival rate of 96.5%
according to UAV compared to 98.5% according to QFI,
while plantation C showed 93.8% survival from UAV and
94.6% from QFI (Table 5). This consistency in results
indicates that the estimates from both methods did not
differ statistically. Additionally, the range of survival
estimates calculated from UAVs was lower than that of
the QFI for these two plantations.

In a study conducted by Zhao et al. (2021), a new
algorithm was proposed for detecting planting failures
and calculating the survival of young Eucalyptus sp.

TABLE 10: Uniformity classes and their respective areas.

sensor mounted on a UAV. The authors achieved
acceptable results, with a failure detection rate exceeding
90% using the proposed methodology. Furthermore, they
pointed out that identifying failures in an orthophoto is
an excellent tool for monitoring survival rates in large
forest plantation areas. Thus, UAVs are a promising
alternative for survival estimates.

However, in plantation A, the QFI data indicated a
survival rate of 100%, while the UAV recorded 92.9%.
This discrepancy can be attributed to the fact that the
survival calculation for the QFI was performed on three
rectangular plots of relatively small area (~120 m?),
while the UAV estimates were based on three circular
plots of one hectare. Consequently, the low sampling
intensity and the small area of the QFI plots compromised
the representativeness of the field inventory, which did
not adequately capture the spatial variability of the
plantation or the survival percentage. For this reason,
plantation A was not used to assess whether UAV are an
appropriate approach for survival estimates.

Regarding the crown area variable, the results
indicated that the variable obtained from the UAV
was not suitable for calculating uniformity indices, as
significant statistical differences were observed between
the UAV and QFI methods for the PCa75 and VC,, indices
(Table 6). However, we emphasise that this result only
encompasses the context of the plantations evaluated
in the present study. Therefore, we encourage further
studies using this variable to cover other scenarios
related to forest planting conditions.

In relation to the tree height variable obtained from
the UAV, comparisons with the heights derived from
the QFI revealed a systematic error with a tendency
to underestimate the measurements. This situation is
thoughtto occur because, in dense vegetation, the passive
sensors mounted on the UAV had difficulty capturing the
reflectance of the ground. Consequently, while the Digital

Plantation MB Ci-L C2-M C3-H Total (ha)
(ha) (%) (ha) (%) (ha) (%)
A us 1.15 7.82 4.76 32.24 8.84 59.94 14.75
A Usf 4.07 27.61 5.73 38.84 4.95 33.55 14.75
B us 28.08 73.14 10.11 26.34 0.20 0.52 38.39
B Usf 25.87 67.39 12.33 32.12 0.19 0.49 38.39
C us 6.21 11.45 27.75 51.21 20.23  37.34 54.19
C Usf 12.76 23.55 28.23 52.10 13.19  24.35 54.19
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Surface Model (DSM) could be obtained clearly, this may
not have been the case with the Digital Elevation Model
(DEM), which could compromise the generation of the
Canopy Height Model (CHM) and, consequently, the
heights extracted from this cartographic product. To
overcome this limitation, it is suggested that an existing
DEM of the area, obtained before the planting was
implemented, be used. Another alternative proposed
in this study is the application of a size class correction
factor (Rj, Equation 1) on the heights obtained from the
UAV, based on field measurements. The application of
this factor was evaluated by calculating the uniformity
indices with the corrected heights (H__, Equation 2),
allowing for a comparison between the uniformity
indices obtained from the UAV and those generated by
the QFL

The results obtained from the UAV-corrected heights
in calculating the uniformity indices in young Eucalyptus
sp. plantations were promising, confirming that the
uniformity indices PH25, PH50, PH75, Cv,, and G did not
present statistically significant differences compared
to the values generated by the QFI (Table 6). Thus, the
UAV-corrected heights are compatible with the heights
collected in the field, and the proposed workflow
for calculating the uniformity indices demonstrated
statistically reliable results. Previous studies, such as
those by Hentz et al. (2018) and Almeida et al. (2021),
corroborate these findings by calculating different
uniformity indices in forest plantations using UAV-
derived heights. The authors conclude that the UAV
photogrammetry technique is a promising tool for
forest inventory, providing an effective alternative to
traditional methods.

Thus, the use of UAV enabled the calculation
of uniformity indices with a higher sampling
intensity, increasing the number of plots employed
in the calculations. This, in turn, resulted in a more
representative coverage of the planted areas, allowing
for uniformity index values that better reflect the reality
of the plantations. McGown et al. (2016) suggested
that the assessment of planting structure should be
performed using multiple uniformity measures or
the combination of different indices for a more robust
analysis. In this study, the uniformity indices calculated
with the greater sampling intensity were standardised
(Table 8), allowing for their spatial integration and the
generation of uniformity surfaces, both considering
planting failures (USf) and without them (US) (Figure 3).

The analysis of US revealed significant patterns
regarding the heterogeneity of tree heights in the
three evaluated plantations. The greatest variability
was identified in plantation B, classified as having
low uniformity, indicating that various factors, such
as competition for limited resources, soil conditions,
and seedling quality, can impact plant growth. For
instance, seedlings with inadequate genetic traits or
poorly adapted to local conditions may lead to irregular
development, contributing to the observed heterogeneity.
In contrast, plantations C and A showed medium and
high levels of uniformity, respectively, suggesting that
tree heights in these locations are more homogeneous,

indicating a more efficient forest management adapted
to environmental conditions.

The inclusion of failure surface analysis in the
uniformity evaluation demonstrated a significant shift
in uniformity patterns across the plantations. Plantation
A, which initially exhibited high uniformity (US), had
its classification altered to medium when considering
planting failures (USf). This change emphasises the
importance of accounting for failures when assessing
uniformity, as areas with absent trees or irregular
growth affect the spatial distribution of the remaining
trees. Thus, the USf analysis provides a more realistic
view of plantation conditions, allowing for a deeper
understanding of growth dynamics and the factors
contributing to variability. This integrated approach is
essential for developing management strategies that
minimise failures and maximise uniformity, ultimately
enhancing the productivity of plantations.

The literature indicates that low uniformity may be
linked to various factors, including heterogeneity of
environmental conditions, competition between trees,
and quality of planted seedlings (Resende et al. 2018).
Planting density and site quality are also significant
influences (Sun et al. 2018). Failures along planting
rows, for example, encourage asymmetric growth of
adjacent trees and result in irregular competition, which
is detrimental to the uniform development of vegetation
(Ackerman et al. 2013). This situation increases the
heterogeneity in tree heights and, consequently,
decreases the overall uniformity of the plantation.

The high concentration of failures in certain areas
can negatively impact uniformity, as locations classified
as having low uniformity also tend to exhibit lower tree
survival. This occurs because a plantation with numerous
failures does not provide homogeneous conditions for
tree establishment, leading to uneven competition for
resources such as light, water, and nutrients (Ackerman
et al. 2013). Therefore, forest management should
focus efforts on medium and low uniformity classes,
prioritising interventions that reduce failures and
promote more uniform growth.

Stape et al. (2010) observed a positive correlation
between initial uniformity at two years and final
productivity at six years in clonal Eucalyptus sp.
plantations. This relationship suggests that uniformity
in the early development stages is a crucial indicator
of future productive potential, where unequal resource
availability, especially in the initial growth phase, can
intensify competition between individuals, resulting in
a heterogeneous plantation. Such irregular competition
can undermine the uniform development of trees and
the efficiency of resource use. Thus, it is recommended
that survival studies be conducted alongside uniformity
assessments, as this information may be critical for
implementing forest management recommendations.
By integrating these analyses, forest managers can make
more informed decisions that enhance uniformity and,
consequently, improve the productivity and quality of
plantations.

In a study of a young Eucalyptus sp. plantation located
in Espirito Santo, Brazil, Luu et al. (2013) found that
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reductions in the potential growth of trees varied from
2% in highly uniform locations to nearly 10% in areas
of low uniformity, resulting in an overall decrease of
4.3% in the potential growth of the stand. The authors
argue that silvicultural systems designed to maximise
tree size uniformity could lead to a 5% to 15% increase
in production at the stand level. Furthermore, this
uniformity contributes to a more consistent supply of
resources and improves tree quality. Conversely, Stape
et al. (2010) indicate that tree size heterogeneity can
reduce stand-level production by 10% to 18%. This
finding reinforces the importance of maintaining a
uniform structure in plantations, not only for immediate
productivity but also for the long-term sustainability of
forestry operations.

However, the lack of detailed silvicultural reports in
our study hampered a deeper analysis of the possible
causes of spatial variability in uniformity within the
plantations. The absence of data on management
practices, such as fertilisation, irrigation, and pest
control, limited our understanding of how these
factors influenced vegetation structure. For a more
comprehensive understanding of uniformity in
plantations, it is suggested that this variable be assessed
alongside silvicultural reports that include data on
replanting, fertilisation, pest control, and competition
with weeds. By combining uniformity surfaces with field
data, a more accurate view of the influences affecting
stand uniformity can be obtained. Integrating these data
will allow for the identification of management practices
that can be adjusted to maximise plantation quality and
productivity.

Conclusions

The research conducted demonstrated the effectiveness
of using UAV in obtaining dendrometric data and
assessing uniformity in Eucalyptus sp. plantations. The
results showed that the survival estimates obtained
from the UAV were statistically comparable to those
obtained through QFI in plantations B and C, highlighting
the viability of this technology for forest monitoring.
Additionally, the analysis of uniformity surfaces revealed
significant patterns in the heterogeneity of tree heights,
suggesting that initial uniformity is a critical factor for
future productivity.

However, the findings also emphasised the need for an
integrated approach when considering planting failures
in the uniformity assessment, as the presence of these
failures can compromise the analysis of stand structure.
For future studies, it is essential to consider the inclusion
of silvicultural reports that encompass management
practices such as fertilisation, pest control, and irrigation,
to achieve a more comprehensive understanding of the
dynamics influencing uniformity and tree growth. This
integration of data will allow for the formulation of more
robust recommendations for forest management.

The implications of this research are clear: the use of
UAV can not only optimise forest inventory processes
but also provide valuable information for the sustainable
management of plantations. The adoption of this

technology may lead to significant improvements in the
productivity and quality of plantations, contributing to
the development of more efficient forestry practices. The
importance of maintaining adequate uniformity is not
limited to immediate productivity but is also essential
for the long-term sustainability of forestry operations. In
summary, this study not only confirms the relevance of
UAV in forest management but also establishes a solid
foundation for future investigations that may further
explore the potential of this technology in different
contexts and planting conditions.
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