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Abstract

Background: Biological populations were studied to understand their ecology and to evaluate the relationships
between living beings that comprise them. Mathematical functions used in probabilistic models should present
multifunctionality, sensitivity, and flexibility to appropriately describe a natural phenomenon. The objective of
this study was to develop a new probabilistic distribution with five parameters to maximize its flexibility and
ensure a better goodness of fit when compared to other important distributions, such as Beta, Burr, Silva and
Pareto.

Methods: New distribution estimators were derived usingthe mathematical expectation of centraland dispersion
moments. Estimated values of the parameters were obtained using an optimization process developed by Abel
Soares Siqueira, research software engineer at the Netherlands eScience Center in Amsterdam. Data for the
application of the developed distribution method were collected at different sites in Brazil, where asymmetry
and kurtosis were detected.

Results: The Pellico-Behling Probability Distribution (5P) was applied to fit the datasets for Cariniana legalis,
Acacia mearnsii, and Eucalyptus saligna. For the average mortality of 124 species, it was used with (4P). The
distribution fitted to sampled datasets was compared with the fitted Beta and Burr (4P) distributions, except
for Silva’s polynomial distribution that was fitted to the heights of the species Eucalyptus saligna and the
Pareto distribution to mortality of 124 tropical species from a fragment of a semideciduous seasonal forest, to
evaluate and verify its potential and robustness.

Conclusions: The new distribution with five parameters is flexible and produced better goodness of fit than
those obtained from the other distributions used for comparative purposes.

Keywords: Transformed Beta; asymmetry; flexibility; aggregative method; ecological experiments.

Introduction beings throughout their life process, it is difficult to
Biological populations are studied to understand describe them accurately because life processes are,
their ecology and to evaluate the relationships in essence, complex, and many of them are strongly
between living beings that comprise them. Although influenced by fluctuations arising from the actions of
numerous mathematical models have been used to biotic and abiotic environmental variables.

characterise the phenomena and behaviours of living Mathematical functionsusedasprobabilisticmodels

© The Author(s). 2026 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.


http://creativecommons.org/licenses/by/4.0/),

Péllico Netto & Behling New Zealand Journal of Forestry Science (2026) 56:1

require certain features, such as multifunctionality,
sensitivity, and flexibility to appropriately describe a
natural phenomenon.

In various circumstances working with random
variables in the forest environment, we encounter
unusual occurrences such as positive and negative
asymmetries, discontinuity points within the sample
datasets, and the occurrence of accentuated kurtosis.
In these samples, few probabilistic distributions are
able to assimilate these characteristics.

As a result of these experiences, we decided to
deepen our knowledge of how such occurrences could
be described by a single probability function, and the
only plausible way to ensure this was to increase the
flexibility of a mathematical model whose structural
composition could be integrated by more than
three parameters, although this path is generally
discouraged by mathematical statisticians.

The studies and research reported in this study
were the result of over 20 years of working with
certain distributions, especially Gamma and Beta,
because of their characteristics and special ability to
describe the behaviours of many biological variables.

Genesis and historical remarks

The first function of interest for describing biological
behaviour is known as the gamma function,
introduced by Leonhard Euler (born April 15, 1707,
in Basel, Switzerland, who died September 18, 1783,
in Saint Petersburg, Russia), that is, the factorial of a
series of integers, as presented in (1):

Jutetd, =T(a)=(a-1)1=12345. (a=1) (1)
0

As can be seen, the gamma function is not convergent
atthe point where # = 0. To convert it as a probability
density function (pdf), a constant § was added to it,
and with transformations, it became convergent from
zero to infinity and was called the Gamma distribution.

u
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Leonhard Euler and Adrien-Marie Legendre
(born on September 18, 1752, in Paris, France and
who died on January 10, 1833, in the same place)
simultaneously developed the integral resulting from
the product of two factorials, which became known
as the Euler integral of the first type in the early
nineteenth century. The derivation of the product of
the two gamma functions is presented in (3).

forx=0 (2)

rx)rpj= je‘”ux"lduje"vvy_ldv =(x-1)(y-1) 3)
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After applying these two integrals and transforming
them into polar coordinates to operate them more
rationally, they finally obtained:

©

Fr(y)=Jerutd, 2 Gi (1) duj

0

This last integral was later named by Jacques
Philippe Marie Binet (born on February 2, 1786, in
Rennes, France and who died on May 12, 1856, in
Paris, France) as a beta function and is identified as

B(xy) in (4).

o

F@I()= e ut"d, 2[;] ™ (1-u)"d, J—F(xw)-B(x, » @)

0

Therefore, B(x,y)z%i(y)) (5)
x+y

Next, we consider the derivation of Legendre’s
double formula, which results in a more attractive and
felixible form of the beta function, that is, taking it in
the condition obtained in (6).

B(x,y)=[u"" (1-uy"d, (6)

Where Re (x) > 0 and Re (y) >0

Makingup m = \/; oru=m’ and d, =2md,
1
B(x,y) =[m** " A=m*)"" 2md,
0
1
B(x,y)=2[m*" (1-m"y"'d,
0

If the beta function is placed in the condition
in which the representations of the Bessel and
hypergeometric functions can be developed, then
taking the form B (x+1, y+1) to facilitate the derivation,
we have (7).

1
Bx+1y+)=2[m* (1I-m")"d, (7)
0

Making up:

2
m
t=——, t(l—mz) =m’, t—tm* =m>,

t
t=m>+tm?, t=m2(l+t) e m*=——
1+¢
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2d, (1+1)—t 1 1

- d=——d
d— (+n°  (1+1)° and 4, 2(1+2)"

Substituting in (7) and rationalising we have:

X

1
t
B(X+l,y+1) :IWdt
0

and, consequently, in the most usual way we have:

1 Zfol
B(x,y) =£Wd, (8

The beta function, as defined in (6), assumes that
the variable u only exists in the interval 0 < u < 1.
Extending this interval to a < u < b such that b > q,
then placing it with a variation in this range results in:

b
B(x,y)=[(t-a)" (b-1)""d, a<t<b

and, consequently, the beta function, in these
circumstances, results in (9):

() F(y)(b—a)™""

Blen= I(x+y)

ast<bh 9

Its application to the theory of probabilities, using
the property that the integral of the pdf, in the interval
of variable x between zero and infinity, must be equal
to one, Cramér (1951), results in:

L+ y)(t—a) ™ (b—1)""
r)r()e-a) "

In modern statistical notation, variables of a
probability function are denoted by the letters x and
y to avoid misinterpretation. The parameters of the
beta function are now named a and 3, and the variable
is considered as x; thus, the general form of the beta
function is presented in (10):

a<t<h

fe)=

D(a+B)(x—a) " (b—x)"
L(e)T(B)b—a) "

Loetsch, Zohrer, & Haller (1973) applied it to fit
diameter distributions using datasets from forests
of Germany, where a and b are the minimum and
maximum diameters, respectively.

Scolforo (2006) presented it with substitutions to
facilitate the practical comprehension by ecologists
and forest managers as follows:

fx)= a<t<b (10)

Tt P, = dy) ™ (e — )"
) = A — )
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Here, we introduce the work of Burr (1942),
who suggested 12 different forms of cumulative
distribution functions which might be useful for
fitting to variables from a variety of datasets,
including biological and ecological variables from
the forest environment. The relevance of choosing
one of these forms of distribution is to facilitate the
mathematical analysis to which it is subjected, while
attaining the condition of goodness of fit as much as
possible (Tadikamalla 1980).

Many attempts have been made to clarify and
apply the 12 probability distributions derived from
cumulative functions that integrate Burr’s system
(Burr1968) and others, to differentdatasets, such asby
Burr & Cislak (1968), who showed that Burr’s system
covered almost all domains of the main Pearson Type
IV and VI distributions, and an important part of that
is the Type I or the beta distribution. Hatke (1949),
after evaluating the cumulative probability function:

F(x):l—(1+xf)"

as proposed by Burr (1942), stated that this approach
was a practical tool for fitting a smooth curve to
observed data. The fitting method was comparable
to that reported by Pearson (1900) and others and
was accomplished with simple calculations. These
distributions are fitted by the method of moments,
and their theoretical frequencies are obtained by
the evaluation of consecutive values of F(x) using
calculating machines and logarithms, and by taking
the derivative of NF(x). No integration or heavy
interpolation is involved, such as may be required
in fitting a classical frequency function; Rodriguez
(1977) focused specifically on Burr’s family of
distributions of type XII, with the generic cumulative:

F(x)=1-(1+x)"

function, which yields a wide range of values of
skewness and kurtosis; and Ferose & Aslam (2013),
who derived maximum likelihood estimators (MLE)
to obtain the parameters of a Burr type V distribution
based on left-censored samples, including confidence
intervals for the parameters. A simulation study was
also conducted to investigate the performance of
point and interval estimates.

Type XII is the most well-known applied Burr
distribution to many datasets of different scientific
origins because it yields a wide range of values of
skewness and kurtosis and can be used to fit almost
any given set of unimodal data (Nadarajah et al.
2012); its pdfis presented in (12).

f (x, c, k) = ck x“ (1 +x° )_(M) (12)



Péllico Netto & Behling New Zealand Journal of Forestry Science (2026) 56:1

Burr’s distributions have appeared in the literature
under different names because of their relationship
with various other distributions, namely, the Pareto
Type Il (Lomax) when c=1, Srivastava (1965); when
k=1itbecomes the Fiskdistribution (Fisk 1961), which
is a special case of the Champernowne distribution
(Champernowne 1952); in its inverse case; for 1/X
it becomes Dagum'’s distribution (Dagum 1977), and
other special cases such as the Compound Weibull,
Weibull-Exponential, logistic, log-logistic, Weibull,
and Kappa family of distributions (Tadikamalla,
1980). These distributions can be used to model a
wide variety of phenomena, including forest variables,
to describe ecological and production information
throughout a forest’s lifetime.

The objective of this study was to develop a new
distribution with five parameters; very flexible and
with better goodness of fit when compared to Beta,
Burr (3P), Silva, and Pareto distributions.

Methods

Development of the new probability density
function

Before presenting the derivation of the probabilistic
distribution proposed by Péllico-Behling, some
considerations should be made:

(1) The statistical procedures used by Burr (1942)
presuppose designing a cumulative probabilistic
function by order statistics and deriving it to obtain
the probability density function. This is called the
derivative method; however, as can be seen in the
several functions mentioned above, this procedure
generates parental parameters in the numerator of
the ratio that makes up the resulting function; and

(2) Since we wished to obtain a probability density
function with five parameters capable of attaining
maximum flexibility of the resulting function,
we decided to generate the probability density
function using another statistical procedure called
the aggregative method.

Considering the beta function as presented in
Equation 8 and with the transformations already
incorporated into it, we have (13).

) _I(e)r(p)
B(a, B) = j t)‘“ﬂ d, ot f) (13)
Several applications of the beta distribution to
diameter and height data of trees from native and
planted forests in Brazil showed that it was not
sufficiently flexible for good fitness in cases of severe
asymmetry and kurtosis, duly evaluated by applying
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the Kolmogorov-Smirnov test (Kolmogorov 1933;
Smirnov 1948).

The flexibility of the beta function was initially
achieved by expanding it from two to three parameters
as follows:

Include transformations in the Bessel function
without mischaracterising it as the beta function, i.e.,

j&.,ﬁ}d1 - %

N e O, (14)
_ T(@Ir(p)d* _T(@I(B)b*b™" "  T(a)r(p)b"***
TP T(a+ ) T(a+p) - T(a+p)

_ r@r@enF

T T r@+p

Taking only the partial components presented
below, it can be shown that they are the result of a
transformed integral:

T(a)T(B)b~* P S S
= =b —d
T(a+p) !1“)‘“" ! I(1+r)“ﬂ '
1 a-1 ba 1 a 1 1 bba—l a-1
— peipp-la=h) z _ _
;[(1+r)”'ﬂ e -[ (1+2)* < Ib“‘ﬂ(1+r""’ !
1 al a-1 1 al
_[bb d - J' bbr (15)

co+bryT " o (brbr) @

By setting bt = u, deriving bdt = du ) d[ = du/b, and
replacing them, we have:

a-1

fobutt d
- Gy _ d (16)
!(b+ Y’ b -([b+u)“+ﬂ

Consequently, by naming the resulting integral with
the three parameters of PB (b, a, f) we have:

rar@ph _ (1wt
f = [, PBMb,a,p)d,  (17)

r'(a+pB) (b+u)a+ﬁ

Naming a - 1 = g, a+f8 = c and u = x, the new function
with three parameters is set to:

f(x) =x/(b +x)° (18)

Some families of distributions have been derived
to approximate some already known distributions
as much as possible. These families are commonly
referred to as distribution or frequency curve systems.
Although theoretical explanations may highlight the
relevance of a system, such arguments must first
be evaluated in terms of their practicality. Some
additional requirements are the ease of computing
and algebraic manipulation; however, it is desirable
to include as few parameters as possible in defining a
system member. In most circumstances, it is sufficient
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to have up to four parameters. Normally, at least three
parameters are needed, and the inclusion of a fourth
parameter can bring about a notable improvement,
but it should be critically evaluated whether this
decision is worthwhile (Johnson & Kotz 1970). Even
considering this important warning, we decided to
incorporate two more parameters ¢ and d into the
beta distribution to make it as flexible as possible.

1 -1
1 a

1
B(b d (19
J- ( (Zﬂ)u dCCal'([b-}— )a+ﬂ “( )

0

dc”

By making @ = t/d and substituting it into the
resulting new function, we have:

1 ) y
I‘IJ‘PB(b’a’ﬂ)du: lr .[ ! T du
dc” s Ry 3
dectd °(b+u)d
L 2 (2] o I(E)TI
1 fu? ¢ 1 w)d (5, , : 7
" :7!(:) (b+uyli*la di(u)“,,‘(b”)[d Y
‘ (20)
Note that,
T_l—d_l—r_d—i_l
d d - d - d
and
i » =

i \d
x:(uj s U=c¢cx ;5 d, =cdx? 1(1’ and 4 = g,
c cd‘c‘“

Replacing them we have:

1 1 =
[x(b+ex’) &) d. = J'il\d 1
0 0 (b +cxd) a’)

Finally, makingt -1 =a, (t/d) + B = e and replacing
them in the integral, we have:

1 xa B
!mdx = PB (a,b,c,d,e)(zz)

The new function with five parameters is therefore
defined as:

flx) = (23)

(b+cxd)e +crd) e

where g, ¢, d, and e are the parameters responsible
for the shape of the curve, which makes it flexible in
its fitting to occurrences of asymmetry and kurtosis,
which forces it to reach the modal point, and b is the
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parameter responsible for the change in position
along the x-axis.

For the transformation of the proposed model
into a probability density function, considering the
property specified by Cramér (1951), we have:

L

X axl

(beex) (;) b*d T(e)

1

J.f(x)dX :j;

0

Consequently, the pdfm is defined as Case 1:

+1

_ (E)a bédr(e)x® @
pdf(x) - I‘(e—g%)r(a+1)(b+cxd) kl (b+cxd)e (25)

where k, is the inverse of the result of the integration

of f(x)

a+l

(%) NG

=

The cumulative distribution function can be
obtained by integrating it into cumulative intervals
for variable x for x > 0, as shown in (20):

k= (26)

a+1
C T d e

xp < bedr(e)

JO fdp(x)dx= Z a+1 a+1 [ (b+cx'1)"’ x xz0 (27)

r

The solution for this integral, instead of applying
complicated hypergeometric functions to obtain the
cumulative function ofthe Péllico-Behling distribution,
was to calculate the additive rectangular areas of
small classes (1/1,000 in size), as an approximation
to the areas obtained by the successive integration
procedure, as presented in (21):

3 £
F(x)= = (28)

Y r(x)

i=1

where Kk is the number of class intervals that are as
small as possible, which in the present case was 1,000.

Derivation of Distribution Parameters

The distribution estimators were derived using
the mathematical expectation of the central and
dispersion moments.

Arithmetic Mean:
=E(X | bk [— g =" 4 (29
" ( ) ':‘1.Xf(X) ! (b+cx ) '(l,.(b+cx") ( )
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[ e e t2(e) ooy Maling d/0/d, = 0 and cquaisin, wehave:

E(Xlzr(e—%“]r(‘%lj (%fb”dr(e) =(§)7r(e—“7”J(r(”7“D x° e(b+cx”’)e’1 cdx’! =(b+cxd)e ax‘!
(30) x"e(thcxd)e_lcdx”l_1 !
F[e_a+2]r(a+2 (b+cx’)

= d ] d 1 Arithmetic mean (31) o d-1

) prer)- e

b'e
Variance: a(b+CXd) = xecd
, ab=x"ecd—acx’
=E(X-p) =E(X*)-p (32)

ab=x"(ecd-ac) (38)

|
E(Xz)zk'([ > flx)d, kjm x:(c(#b—a)jd Mode (39)

AV . Inflection Points:
tex ) K Consider the result of the first derivative of f{x), as
(J b°dT (e) (33) stated in (40), and we have:

d f(x) _ (b+cxd)"ax“’l —e(b+cxd)e’l(cdx "“H)

(40)
d, (b+cx“')26
ey
ol=—" - i Variance (34) Simplifying, we have:
lpfe-tl|p( el
b d d df(x) (b+cx‘1)“’l [(b+cx‘1)ax“’l —cdex"*""]
d, (b+cxd)2“’
and the standard deviation is equal to: df(x) (b+cxd)ax“_l —cdex !
d, - (b+cxd)e+1 -
F[e—a+3jf(a+3)
d d . abx“'vacx ' —cdex !

O-x = 2 X
(CJ” r(e_aﬂjr(aﬂj (35) (b+cx?)
b d d

df(x) abx'+x“"(ac-cde)

Mode: d. (b+cxd)e+1
Taking the function as formalised in (23), we have:

(41)

Taking now the second derivative of (41), we have:
a

fx = i B (36) 2r(x) (brex®) ab(a—1)x*"*+c(a—de)(a+d—1)x "7
(x) brex) 1 )_(b+ex’)an( ()bwd)gw) J(ard1)x2]

Deriving it with respect to x, we have
[abx ot +c(a—d e)x ‘”‘H](e+1)(b+cx ‘1)5 cdx"!

42
(b+cxd)2(e+l) ( )

d f(x) (b+cxd)"ax"" —e(b+cxd)""(cdx ‘”d") (37)

d, (b+cxd)2“
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Making d” f{x)/d, = 0 and equalising, we have:

(b +ox? )H [(azb - n'b)x"'2 +cla—defa+d— I)r“'d‘z] B
(b +ex)f B

cla-de)x p A= 1](e+1)cdxd’1

43
= [abx “y (43)
Simplifying we have:

(b+ex?la*b—ab)x** +c(a—de)a+d -1)x 2|

:[abx“’l+c(a—0le)x‘””H}(eH)cdx”H (44)

Expanding the terms we have:

((IZZ)Z —ab’ )x”’2 +be(a—de)(a+d-1)x" +(azb —ab) ex ™

+c(a—de)(a+d—1)x"*2 =

=able+1)cdx™"? +c* d(a—de)(e+1)x" 22 (45)
Note that with all equality terms are multiplied by x*?
and simplifying we have:

(a:b: —ab’ )+ be(a—de)(a+d—1)x* +(a2b—ab)m" +c*(a—de)(a+d—1)x* —

—ab(e+1)cdxd—czd(a—de)(eJrl)x:d =0 (46)

As can be seen, the algebraic result is an equation
of the second degree, which is presented in a more
appropriate manner, resulting in:

7 [c‘z (a—de)(a+d-1) —czd(ﬂ—de)(e+l)]+

Xd|:b(,‘((l*({8)(17+d*l)ﬂ'((lzb*(lb) C*(lb(,‘(i(e‘*’l)]‘f’

(47)
ab?(a-1)=10
Rationalising, we have:
xzd{cz(a—de‘)[(n+d—1)—d (e+l)]}+.\'”{c[b(a—de)((1+d—1)
+ab(a-1)-abd(e+1)|}+ ab’(a-1)=10 (48)

Making up x* = z? and solving it, we have:

z,= —{elbla—de)(a+d—1)+abla—1) —abd(e + 1]} +
2{c2(a —de)[(a +d — 1) —d(e + D]}

J{clb(a —de)(a+d —1) + ab(a — 1) — abd(e + 1)]}% —
2{c2(a —de)[(a +d —1) —d(e + 1]}

J-4{c*(a—de)f(a+d-1)-d(e+1)}ab*(a—1) (49)
2% (a—de)(a+d-1)-d(e+1)]}
Rationalising, we have:
—bc[2a(a — 1) + de(1 —d — 2a)] +
2c2[a(a — 1) + de(de + 1 — 2a)]

i

Jb2c2[2a(a — de — 1) + de(1 — d)]? — 4b2c2[a(a — 1) + de(de + 1 — 2a)]ala — 1)
2c?[a(a — 1) + de(de + 1 — 2a)]

1
and x, =z gives us the inflection points (50)
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Asymmetry (A):

Considering the result of the third moment of pdf(x)
in (23), we have:
my=E(X—p,) =E(X*)-3[E(X)E(x*)]+2[E(X)] (51)

or: m=£(20)-3 (o7 +42)] 2 (52
rgea;4)r[a;—4j 5
() et rld)

The asymmetry A is obtained by: 4= m—; (54)
o

and: E(X3):

Where o is the standard deviation derived in (35).

Kurtosis (K):
Considering the result of the fourth moment ofpdf(xj
in (23), we have:

)] =E(X“)—4[E(X)E(X3)J+
6{[E(X)TE(X2)}—3[E(X)]“ (55)

=E[X-E(X

or: m, = < {m +3 ,ux o’ +”X”_2(ﬂx)3}>+‘
6[;1 o’ ,u‘} ,u\) (56)
a+5 a+5
and: E(x*)= FA(E_ d jl"( d j (57)

(G (=)

The Kurtosis K, given that its value in the normal
distribution is equal to three, is obtained by:
m
K= ——j (58)
o
Where o is the standard deviation derived in

(Equation 35).

Conditions for the existence of the probability
density function

The existence of the pdf{x) requires that the following
conditions must be met:

(1) The coefficients must assume values greater than
zero, thatis,a>0,b>0,c>0,d>0,e>1,and e
> 2a, which are imposed by pdf{X} itself (Equation
26) to ensure the characteristic of unimodality
and avoid the occurrence of indeterminacy; and

(2) Considering the parameters, arithmetic mean
(Equation 31) and variance (Equation 34), the
restriction d # (a + 2) is added.
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Simplifications of the derived function
As can be seen, the derived function has five
parameters, namely, g, b, ¢, d, and e, as presented in
(Equation 25), which is the most generic unimodal
distribution and named Case 1.

Case 2. By setting a = 0, the distribution becomes
hyperbolic and can be summarised as follows:

The Péllico-Belling Hyperbolic function:
1

f(xz)=kzm (59)

Arithmetic mean g, = , (60)

o))
Variance o0, = —ul,  (61)

()l ()

Thereisnomode (62)

Mode: x,=0

Inflexion Points: In this case, there are no inflexion
points.
e )r(2)
Asymmetry: E(Xj): - d d (63)
Nl (L
b d d

and: my, = E(X3) =3[ 1, (00, + 423 ) |+2(1,,) (69

The asymmetry is obtained in (Equation 65):

4="3 (65)
2
=g
Kurtosis: E(Xj): . d d (66)

and:

m,, = E(X;)—4</JX2 {msz "’3[/";(2 (O'fz +ﬂfz )J -

2sa) )+ o[ s (0 -] -3 (67

The kurtosis is obtained in (68) is:

My, (68)
o)

K, =
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Data

Data for the application of the developed distribution
were collected at different sites in Brazil, where
appropriate circumstances of asymmetry and kurtosis
were detected.

Mortality and evaluation of species in tropical
forests (Positive Asymmetry, Kurtosis, and
application of case 2 of the distribution)

Sample data were collected in a fragment of the semi-
deciduous seasonal forest located at Reata Farm, in
Cassia, MG, Brazil. Nine sampling units of 1 ha each
were measured and subdivided into 100 subunits
of 100 m?, totalling 9 ha as primary units and 900
subunits, in which the census was conducted.

The area is in the municipality of Cassia,
southern region of the state of Minas Gerais, Brazil,
with approximately 200 ha and 90 ha of seasonal
semideciduous forest in a climax state that is
untouched and located between: latitude 20°20’ and
20°40’ S and longitude 46°40’ and 47°00° W.

According to RADAMBRASIL (1978), the studied
region is characterised by the remaining morpho-
structural domain of folded chains, showing traces of
these structures, with occasional exposures of their
basements. The area in question is in the Alto do Rio
Grande Plateau Region, with average altitudes around
680 m above sea level.

According to UFV (2010), in this region, soil
variations classified as Dystrophic Red Latosol occur,
featuring mineral, non-hydromorphic soils, and more
specifically, the typical moderate A, medium texture,
sub-deciduous forest phase, flat relief, and smooth
undulated type.

The climate in the region of Cassia, MG, Brazil,
according to Koppen's classification, is of the Cwa
(altitudinal tropical) type, with rigorous and rainy
summers, an annual precipitation of 1200-1400
mm, and average annual temperatures of 26.5 °C
(maximum) and 19.5 °C (minimum).

Data on the height distribution of the species
Cariniana legalis (Mart.) Kuntze and an average
mortality of 124 species, evaluated in the period 1996-
2001 from this area, were used to illustrate the fit of
the new probability distribution to height data with
strong positive asymmetry and mortality by diameter
classes under conditions common in tropical forests,
such as those with negative exponential shape.

Plantation 1 (Symmetry)

Data from eight temporary plots sampled in
commercial plantations of black wattle in the
municipalities of Cristal and Piratini in the state of Rio
Grande do Sul, Brazil within seven years were used for
the present study. The areas are located at 30°59’59”
Sand 52°02’54” W, and 31°26’52” Sand 53°06°14” W,
respectively. The local altitudes vary between 320 m
and 370 m above sea level.
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According to the Koppen climate classification,
the climate of the region for Cristal is Cfa or Piratini
Cfb. The average annual temperature is 18.0 °C for
Cristal and 16.5 °C for Piratini and the average annual
precipitation is 1309 mm for Cristal and 1507 mm for
Piratini.

The study sites were gently undulating to
undulating, with the soil type Neossols Regolithic for
Cristal and soil type Litholic Neossols for Piratini.

Data from the diameter distribution of Acacia
mearnsii De Wild from these areas were used to
illustrate the fit of the new probability distribution for
the situation in which the data are close to normality.

Plantation 2 (Negative Asymmetry)
Data illustrating negative asymmetry were sampled
in an experiment implemented in the Ibiti Forest
Park owned by the company Ripasa S.A. Cellulose and
Paper, located in the municipality of Itararé, SP (data
kindly made available by Professor Dr. Carlos Roberto
Sanquetta - Federal University of Parand). The local
geographic coordinates are: 24°09’° S and 49°19’
W at an altitude of 900 m. According to the Képpen
climate classification, the climate of the region is Cfa,
sub-humid sub-temperate, with an annual average
temperature of 20.3 °C and an annual average
precipitation of 1371 mm.

The study site is slightly undulating, with soil of a
deep typical dark red dystrophic Latosol type.
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Data of the species Eucalyptus saligna Sm. from
this area was used to illustrate the fit of the new
probability distribution to a height dataset with
strong negative asymmetry.

The data of the three species mentioned and
mortality of 124 tropical species are summarised
in Table 1, where the frequencies for graphical
presentations were transformed into relative
dispersions to configure a harmonious view of
different datasets.

Fitting the Péllico-Behling distribution

The Péllico-Behling distribution was fitted to different
datasets, first using different softwares, such as SAS,
MATLAB, Statistics, SPSS, R, and Table Curve, but the
results for the coefficients were not the same in each
one of them as expected. We noted that this divergence
is due to a laerge number of possible combinations
of the five parameters that can reach goodness of fit
for the proposed distribution. We searched for an
alternative solution for this problem and discovered a
function proposed by mathematician Dr. Abel Soares
Siqueira, who used an optimisation procedure, and
the resulting function was denominated OPTMBEL
and is elucidated in (40), using the Julia language
(Julia language 2025, Bezanson et al. 2025). The
following packages were used: CSV, DataFrames,
Plots, ADNLPModels, ForwardDiff, NLPModels,
JSOSolvers, LinearAlgebra, Logging, Printf, Percival,

Table 1. Datasets used to fit the Pellico-Behling Probability Distribution.

Cariniana legalis Acacia mearnsii Eucalyptus saligna Mortality
Heights (1) DBH (2) Heights (3) Tropical species (124)
(m) (cm) (m) (n)
Classes Freq. Classes Freq.* Classes Freq.* Classes Freq.*
Abs. Rel. Abs. Rel. Abs. Rel. Abs.  Rel.
2.5 0.045 4 0.050 29 3 0.045 14  0.062 323
7.5 0.136 78 0.150 55 0.136 22 0.188 112
12.5 0.227 141 8 0.250 178 0.227 7 30 0.312 55
17.5 0.318 98 10  0.350 146 0.318 13 38 0.438 28
22.5 0.409 70 12 0.450 292 11 0.409 22 46  0.562 6
27.5 0.500 48 14  0.550 335 13 0.500 62 54 0.688 1
325 0.591 29 16  0.650 230 15 0.591 122 62 0.812 6
37.5 0.682 12 18  0.750 116 17  0.682 168 70 0.938 1
42.5 0.773 6 20 0.850 51 19 0.773 37
47.5 0.863 4 22 0.950 14 21 0.863 3
52.5 0.954 23 0954 0
Total 493 1446 440 532

Abs: absolute values. Rel: relative values. Freq: Frequency.
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and NLPModelslpopt to develop the function. In the
OPTMBEL function, xdata represents the frequency
classes and ydata represents the frequency of
the classes. The outputs of the function are the
values of the five coefficients of the Péllico-Behling
distribution. The primary objective of the function
is to minimise the sum of squared residuals between
the observed frequency values and those estimated
by the probability density function (pdf). This
process involves optimising the pdfto ensure that the
estimated frequencies closely match the observed
data, thereby enhancing the accuracy and reliability
of the model.

The details of the OPTMBEL function are provided
in Appendix 1. The OPTMBEL function fits a nonlinear
mathematical model defined by the following
expression:

xP1

f0) = Grpsxomps

to the observed data, xdata and ydata. Using
constrained optimisation with the Ipopt solver via
the ADNLPModels package, the function minimises
the sum of squared residuals between the model
and the data, along with a regularisation term to
prevent overfitting. The model is subject to three
nonlinear parameter constraints to ensure the
desired mathematical properties, as described above.
Upon completion of the fitting process, the function
prints the estimated parameters, the optimisation
status, and the residual of the objective function. It
also generates output files in both text and LaTeX
formats, containing the initial parameters, optimal
parameters, evaluated constraints, and process status,
thus supporting documentation and reproducibility
of the results

Considering the complexity of the statistical
estimators of the distribution, a function called ESPN
was developed to obtain them using the Julialanguage.
In this function, a, b, ¢, d, and e are the distribution
parameters. The output results were the mean, mode,
variance, standard deviation, skewness, kurtosis, and
inflection points.

The details of the ESPN function are provided in
Appendix 2. This function computes and displays
various statistical measures and characteristics of
the distribution parameterised by a, b, ¢, d, and e
(corresponding to p1, p2, p3, p4, and p5 obtained
from the OPTMBEL function) of the Péllico-Behling
distribution. Specifically, the function calculates
the mean, variance, standard deviation, and mode
of the distribution using expressions involving the
gamma function (I'), and determines the inflection
points of the density curve. Additionally, it computes
measures of skewness and kurtosis, providing a
detailed description of the distribution’s shape.
These calculations are carried out analytically based
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on nonlinear relationships among the parameters,
enabling a comprehensive analysis of the statistical
properties of the defined distribution. The results are
printed to the console to facilitate user interpretation.

Goodness of fit
The goodness of fit of the fitted distributions was
evaluated by the application of the Kolmogorov-
Smirnov test (Kolmogorov 1933; Smirnov 1948) at a
95% probability.

Distributions additionally selected to fit the
datasets to be compared to the Péllico-Behling
distribution.

Beta distribution

From Euler’s work, his mathematical functions
became statistical matrices for the development of
probabilistic distributions, from which a family of
continuous ones defined in the interval (0-1) emerged,
composed of two positive parameters, denoted by
a and (3, which appear as exponents of the random
variable X and control the shape of the distribution.
The Beta distribution has been applied to model the
behaviour of variables, limited to finite-size intervals,
in a great diversity of populations.

However, in biological and forestry applications,
the interval for variable X lies between two finite
values a and b, which implies that this distribution, as
the mother of the Pellico-Behling distribution, will be
fitted to all datasets in the form already mentioned in
(10), to be compared with the proposed distribution
by the authors and verify their real potentiality and
robustness. The fitting of the beta distribution was
performed using SAS (on demand for academics) and
the Julia language.

Burr’s distribution

The Burr distribution is a continuous probability
distribution for a non-negative random variable, and
is one of several different distributions, sometimes
called the “generalized log-logistic distribution,”
which is most used to model household income but
can also be applied to fit ecological and production
variables in native and planted forests.

This distribution as presented in (Equation 12) will be
fitted to all databases to establish a comparison with
the Péllico-Behling distribution. Burr’s distribution
was fitted using SAS (on demand for academics) and
the Julia language.

As previously mentioned, we applied Burr’s
distributions to compare their fitting with the Péllico-
Behling distribution. In the case of the exponential
type of distribution, we evaluated the application of
the Pareto Type II (Lomax) distribution when the
parameter c=1, but the results were not satisfactory
as the estimated frequencies in the upper diameter
classes diverged significantly from the observed
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frequencies, even though the KS test attests no
significance. Therefore, we decided to fit the original
Pareto distribution (Pareto 1897) to this dataset, and
the results were deemed appropriate.

Silva’s distribution

The function proposed by Eduardo Quadros da Silva,
Silva et al. (2003) was chosen to be fitted to the height
database of the species Eucalyptus saligna because
of its special condition of strong asymmetry and
kurtosis, which made it attractive for the flexibility
resulting from the polynomial of n degree in the
second segmentinside the limits 11 sx_<12, as presented
in (Equation 69).

cyx? if0 <x< |
Llapx™+ax™+...+a,, ifL<x< |
k .
% if x > 1, (69)

0 otherwise

where n, d, and h are positive integers; a,a,da,..a,
are the coefficients of the polynomial; ¢,and c, are
coefficients of the complementary functions of Silva’s
truncated distribution; x is the selected variable; k is
the value of the integral:

T ; . ¢

I{xd ¢ +(0t1 X' +a, x"" +a, x" 2+...+am)+—i}dx =k
x

0

[, is the upper limit of the class in which the function
c,x! is fitted; and [, is the upper bound of the data
class for the polynomial fit.

This polynomial distribution is composed of
three mathematical functions, as presented in
(Equation 69), in which the first part consists of a
positive increasing potential function, the second is
a polynomial adjusted by the least squares method,
and the third is a hyperbolic descending function,
which has a straight-line y = 0 as an asymptote. The
three segments must meet the requirements of a
probability density function; that is, they must be
continuous, with non-negative functional values and
convergent in (0 + o0). Silva et al. (2003) emphasised
that five steps are required to fit these functions.

Recently, an adaptation of the Silva’s function
was conducted, with refitting of the polynomial
with the help of the Julia language. This adaptation
was conducted aiming at a better refitting of the
complementary functions to achieve smoothness
on the resultant truncated function composed with
the polynomial curve. The coefficient value in the
function g,(x) = ¢,x was optimised to approximate
the estimated values to the observed ones. The values
of h in the function g,(x) = c,/x" were also optimised.
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The cut points on the polynomial curve:
g,(x)=x"+a,x"'+a,x"*+.+a,_

were chosen to smooth the junction of these with
9,(x), and to approximate the estimated values to
the real ones, with less squared error; therefore,
the degrees of the polynomials ranged from the
2" to 5% degree. The polynomial coefficients were
obtained through simple linear regression, which
made the estimates more accurate. After completing
the fittings, with adaptation of Silva’s probability
function, this distribution improved in describing the
height behaviour of the species Eucalyptus saligna.
The fitting of de Silva’s distribution was performed
using the Julia language.

Fitting the Pellico-Behling distribution by cross
validation

To evaluate the generalisation capacity of the
Pellico-Behling distribution, fittings were performed
using cross-validation. The DBH database for the
black wattle species (Plantation 1) was used for
this purpose. In this case, a sample dataset was
considered, consisting of 674 values corresponding to
data from a single stand. Two hundred fittings were
conducted, with each fitting using 80% of the values
to fit the distribution and the remaining 20% to
evaluate the goodness of fit of the fitted distribution
using the KS test at a 95% probability. The selection
of values for fittings and goodness of fit evaluation
was done randomly for each replication. The relative
classes presented in Table 1 were created to obtain
the frequency for fitting the data and testing their
goodness of fit. The 200 replications allowed us
to evaluate the behaviour of the Pellico-Behling
distribution coefficients through their frequency,
as well as the probability and cumulative density
functions, in addition to the performance of the
goodness of fit test.

The fittings via cross-validation were performed
using the OPTMBELR function, developed in the Julia
language. Details of the OPTMBELR function are
provided in Appendix 3. This function was designed to
validate the robustness and stability of the proposed
model fitting through a repeated cross-validation
(resampling) procedure applied to diameter data of
Acacia mearnsii. Based on the original dataset, the
function performs R repetitions of a random partition
into two subsets: one for model fitting (80%) and
another for testing (20%). In each repetition, the
data are normalised and organised into 12 frequency
classes using fixed interval limits. Model fitting is
carried out using constrained nonlinear optimisation
via the Ipopt solver, following the mathematical
formulation implemented in the OPTMBEL function,
which minimises the sum of squared residuals with
an added regularisation term.
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In each iteration, the estimated parameters were
stored, fitted curves were generated, and the observed
and estimated cumulative frequencies were compared
using the Kolmogorov-Smirnov (KS) test. The test
statistic was calculated and compared to the critical
value to evaluate the goodness-of-fit. At the end of
the process, the function returned the proportion
of iterations in which the calculated KS statistic was
lower than the critical value, indicating the percentage
of statistically acceptable fits. Additionally, various
graphical outputs were saved, including histograms
of the estimated parameters, fitted frequency and
cumulative curves, and the distribution of KS values,
providing a comprehensive overview of model quality
and parameter stability.

The OPTMBELR function required four input
arguments:

(i) a DataFrame X containing at least one column
named DAP, with the diameter values to be
analysed;

(ii) an integer R, indicating the number of cross-
validation repetitions;

(iii) a vector p0 containing five initial values for the
model parameters; and

(iv) a string out, specifying the path to the directory
where the graphical output files will be saved. The
function is included as an annex to this document
to ensure reproducibility and to support future
applications.

The OPTMBEL and OPTMBELR functions required the
following packages for their implementation: CSV is
the package for importing, creating, and manipulating
files in CSV format, DataFrames is the package for
creating and manipulating data tables, Plots is the
package for generating graphics, ADNLPModels is the
package that provides implementation of automatic
differentiation-based models and ForwardDiff is
the package that implements methods to obtain
derivatives, gradients, Jacobians, Hessians, and
higher-order derivatives of native Julia functions using
automatic differentiation in direct mode, NLPModels
is the package that provides general guidelines for
representing nonlinear programming problems in
Julia and a standardised API for evaluating functions
and their derivatives, J]SOSolvers is the package that
provides optimisation solvers for unconstrained
optimisation, LinearAlgebra is the package for
computing matrices, Logging is the package that
provides basic features for logging output in Julia,
Printf is the Package that provides basic features for
formatted printing in Julia, Percival is the package
that provides implementation of the augmented
Lagrangian solver and NLPModelsIpopt is the package
that provides a thin IPOPT wrapper for NLPModels.
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To compare the Péllico-Behling, Burr, and Beta
distributions, one iteration was randomly selected
from the 200 data partitions to evaluate the
Kolmogorov-Smirnov (KS) test on both the fitting
(80%) and testing (20%) datasets. The fitting dataset
was used to fitthe three distributions, and the resulting
models were then evaluated on the testing dataset
using the KS goodness-of-fit test. During the fitting
process, the diameter variable was standardised to
the [0, 1] range, as previously described.

Evaluation of the Péllico-Behling distribution on
independent datasets

A new sample consisting of 271 diameter at breast
height (DBH) measurements of Acacia mearnsii (black
wattle) was collected in May 2025 from three circular
plots of 400 m? each, randomly installed in a 7.3-year-
old stand located in the municipality of Piratini, in
the state of Rio Grande do Sul, Brazil. It is important
to note that this dataset was not used in the initial
fitting of the distributions described in Table 1 and
was reserved exclusively for the external validation
of the fitted probability functions. The aim of this
approach was to evaluate the predictive performance
of the Péllico-Behling distribution when applied
to independent data obtained under conditions
similar to those used for model fitting. The fitted
distributions were assessed on the testing dataset
using the Kolmogorov-Smirnov (KS) goodness-of-fit
test. During the fitting process, the diameter variable
was standardised to the [0, 1] range, as previously
described.

Results

The Pellico-Behling Probability Distribution (5P) was
applied to fit the datasets for Cariniana legalis (Figure
1), Acacia mearnsii (Figure 2), and Eucalyptus saligna
(Figure 3), as presented in Equation 25. The average
mortality of 124 species was obtained using case 2,
that is, with (4P). The fitting of the distribution to the
data of average mortality of 124 species using case 2
with four parameters (Equation 59), is presented in
(Figure 4). In all these cases the cumulative function
was calculated using the additive rectangular areas
of small classes of 1/1,000 size, approximative to
the area obtained by the integration of function
(Equation 28). The results of the estimates for the
populations are presented in Table 2. The results of
the fitted distributions, including their statistics and
the goodness-of-fit evaluation are presented in Table
3. The results of the estimates for the populations
obtained by Burr distribution are summarised in
Table 4 and Figure 5. The results of the estimates
for the populations using the Beta distribution are
summarised in Table 5 and Figure 6. The results of
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Figure 1. Péllico-Behling Probability Distribution fitted to heights of the species Cariniana legalis.
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Figure 2. Péllico-Behling Probability Distribution fitted to DBH of Acacia mearnsii.
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Figure 3. Péllico-Behling Probability Distribution fitted to heights of the species Eucalyptus saligna.
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Figure 4. Péllico-Behling Probability Distribution fitted to the average mortality of 124 tropical species, evaluated
from 1996 to 2001, in a fragment of the semideciduous seasonal forest in Cassia, MG, Brazil.
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Table 2. Summary of the results for fitting the Péllico-Behling distribution to different sets of data.

Application cases Relativised (x) fx) F(x)
k = 1000 classes
X 5.85445 Zf(x)
. . =i = F ==
Cariniana legalis ¥ 60 7 (029542 +133537x12¢) v > /()
i=1
) 1.65945 Zf(x)
X — i=1
Acacia mearnsii x=11 f(x)= _ F(x) =%
242 (1.07521+6.75713x71¢ ) 3 /()
1 5.19183 lef(x)
Eucalyptus saligna x=-1 S(x)= 1481904 1413236 F(x)="F—
25-1 (0.89138+12.58504 x4 > £ (x)
% =6 _ ! > f)
Mortality X= 786 J(x)= F(x)=-""—

(1.0308+0.3653 X370

)16.4772

> /(%)

i=1

the estimates for the populations using the Silva’s
distribution are summarised in Table 6 and Figure 7.

Results of fitting the Pellico-Behling distribution
by cross validation

The fittings, considering cross-validation for 200
replications are presented in Figure 8, applied to
the distribution of diameters of Acacia mearnsii De
Wild (n = 674). The fitted functions proved suitable

Table 3. The Péllico-Behling distribution statistics.

to highlight the distinct variabilities of the observed
distributions, showing robustness in representing the
data, as well as stability across the 200 simulations
performed.

The proportion of times where the calculated
Kolmogorov-Smirnov (KS) test value was equal to
or less than the tabulated KS value reached 97.50%
across 200 replications of the fittings, as illustrated
in Figure 9, showing the goodness of fit of the tested

Statistics Acacia mearnsii  Eucalyptus saligna  Cariniana legalis Mortality
DBH Heights Heights 124 trop. spp.
Mean 0.4939 0.6047 0.318 0.1942
Variance 0.0269 0.0089 0.033 0.0517
32:2;2‘1 0.1642 0.0946 0.1827 0.2275
Mode 0.5349 0.6528 0.2144 0
Inflexion points [0.3644, 0.6844] [0.5808, 0.7230] [0.1111,0.3174]
Asymmetry -0.1395 -0.8585 2.2373 2.9471
Kurtosis -0.2521 0.803 12.0516 12.44
KS 0.0317ms 0.0387"s 0.0161"s 0.0120"s
Tab. (5%) 0.0366 0.0648 0.0613 0.0590

ns: not significant.
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Table 4. Summary of the results for fitting the Burr distribution to Cariniana legalis, Acacia mearnsii, Eucalyptus
saligna, and Pareto distribution for mortality of 124 tropical species.

Application cases f(x) KS test
) 291640

1.75895 2.91640 (m

2.91640 [1.'}'5395+1] 0.0318"s
1+ (5154552)
x 2124504

x 391762
311.64591 3.91762 (m)
fay = .

x 3917621 (311.64591+1) 0.0323"™
o1+ (srsomms) |

Cariniana legalis )

Acacia mearnsii

9.10632 7.12003 (550 )mm3
| . : 33250700 0.0387"
Eucalyptus saligna f(-“) = - 120037 (9-10632+1)
N .
x| 1+ (3350700) ]
1.4651 46.632814651
Mortality (x) — o (14651+1) 00369

KS - Kolmogorov-Smirnov test
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Figure 5. Burr Probability Distribution fitted to heights of the species Cariniana legalis, diameter of Acacia mearnsii,
heights of the species Eucalyptus saligna, and average mortality of 124 tropical species from a fragment of the
semideciduous seasonal forest.
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Table 5. Summary of the results for fitting the beta distribution to different sets of data.

Application cases f(x) KS

1 (x — 2.5)%026671 (52 5 — x)*0551-1
B(2.0266,4.0551) (52.5 — 2.5)20266+4.0551-1

Cariniana legalis feo) = 0.1021™

1 (x _ 2)6.3948—1 (24 _ x)5.?513—1
1 (x _ 3)3.9622—1 (23 _ x)5.8387—1
Eucalyptus saligna f(x) = B(89922,5.8327) (23 — 3)89622+58387-1 0.0727*
0.0713-1 2.3436-1
Mortality f( ) — 1 (x - 14?) (78 — X) 0.4572*
X

B(0.0713,2.3436) (78 — 14)0.0713+2.3436-1
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Figure 6. Beta Probability Distribution fitted to heights of the species Cariniana legalis, diameter of Acacia mearnsii,
heights of the species Eucalyptus saligna, and average mortality of 124 tropical species in a fragment of the
semideciduous seasonal forest.
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Table 6. Summary of the results for fitting the Silva’s distribution to heights of the species Eucalyptus saligna.

Component f(x) KS
1 [y = 0.07447 x237660
2 firy = —0.3359 x* + 18.104 x* —361.58 x* + 3196.9 x — 10571 0.012"
96.81705e19
3 fay = L 1azveamors

distribution. This high percentage of fit highlights
the consistency and reliability of the distribution to
assess the characteristics of the variable used. 01s

Approximately, the values of coefficient a ranged
from 0.7 to 1.3, while coefficient b ranged from
slightly above 1 to 1.3. Coefficient ¢ ranged between
2 and 7, coefficient d between 3 and 5, and coefficient
e between 2 and 6, Figure 10. No outlier values
were observed for the coefficients across the 200
simulations effectuated, indicating that they are
stable and reliable to be used. oo . -

The fitting through the optimisation of the proposed B center b e o e
pdf, which minimises the sum of squared residuals
between the observed and estimated frequencies,
proved to be an excellent fitting method. The
optimisation procedure showed its effectiveness in 07s |
assessing the characteristics of the data distribution,
ensuring that the adjusted coefficients fell within an
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Figure 8. Fitting of the Péllico-Behling Probability
Distributions [f(x), F(x)] through cross-validation,
repeated 200 times, for the database DBH of Acacia
mearnsil.

1 7 9 il 13 15 17 19 2 23 25
Class centre of heigth (m)

Figure 7. Silva’s Probability Distribution fitted to
heights of the species Eucalyptus saligna. B Calculated Value

Critical Value

acceptable range of values. By minimising residuals,
the method provided a close approximation between
observed and estimated frequencies, highlighting its
reliability and applicability for fitting the proposed
pdf, with consistent and accurate results, reinforcing
the overall robustness of the statistical analysis.
Consequently, the performance of the procedures
using the OPTMBEL and OPTMBELR functions enables

Frequency

to assert that the obtained results were reliable and 0.03 0.06 . 012 015
statistically robust.

The fitting results of the Péllico-Behling Figure 9. KS tests applied to fittings with the Péllico-
distribution, applied to 80% of the Acacia mearnsii Behling Probability Distribution using the database
De Wild DBH data and tested on the remaining 20%, for goodness of fit assessment, repeated 200 times, to

representing one instance among the 200 cross- DBH of Acacia mearnsii.
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validation repetitions, are presented in Figure 11 and
Table 7. The corresponding results for the Beta and
Burr distributions are shown in Figure 12 and also
summarised in Table 7.

Evaluation of the Péllico-Behling Distribution
Using Independent Datasets

The fitted Péllico-Behling (Table 2), Burr (Table 4),
and Beta (Table 5) distributions were evaluated for
their ability to predict the diameter at breast height
(DBH) distribution in a new Acacia mearnsii stand
dataset that was not used during the model fitting
stage. The results showed that the Péllico-Behling
distribution demonstrated greater flexibility in
capturing the observed diameter structure, being
the only one among those tested that did not show
statistical significance in the Kolmogorov-Smirnov
(KS) test—indicating a satisfactory fit to the observed

35 4.0 4.5 5.0
Values of the parameter d

Figure 10.Frequency of the Péllico-Behling Probability
Distribution coefficients, through cross validation,
repeated 200 times, to DBH of Acacia mearnsii.

data (Figure 13). This underscores both the potential
of the Péllico-Behling distribution for modeling
DBH distributions in Acacia mearnsii stands and the
flexibility of the function.

Discussion

Probability distributions are very important models
to describe the behaviour of biotic variables in forest
ecosystems, as well as their evolution in a time horizon
that represents a climax life cycle. The modeling
of biological and ecological phenomena through
probabilistic distributions makes it possible to treat
them quantitatively and evaluate them statistically.
The use of distributions for such circumstances has
been widely used by renowned researchers dealing
with biological, forestry and ecological experiments,
such as, Bailey (1980), Bailey & Dell (1973), Bowling
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Figure 11. Péllico-Behling distribution fitted to 80% of the DBH data from Acacia mearnsii and tested on the
remaining 20%, representing one instance from the 200 repetitions used in the cross-validation.

et al. (1989), Borders et al. (1990), Xu et al. (1992),
Cao (1997), Fonseca et al. (2009), Nanosa et al.
(2000), Zhang et al. (2001), Liu et al. (2002), Zhang
et al. (2003), Ivkovi & Rozenberg (2004), Liu et al.
(2004), Qin et al. (2007), Breidenbach et al. (2008),
Machado et al. (2008), Binotti et al. (2012), Sandoval
etal. (2012), Rupsys & Petrauskas (2017), Miranda et
al. (2018), Chen et al. (20019), Schmidt et al. (2019),
Duchateau et al. (2020), Piva et al. (2020), Schmidt et
al. (2020), Ciceu et al. (2021), Cao (2022), Guo et al.
(2022), Goodwin (2022), Waldy et al. (2022).

In the last 30 years, we have encountered numerous
datasets whose fitted distributions presented
asymmetry, accentuated kurtosis, and other
peculiarities thathaveled to non-goodness-of-fitwhen
using the most applied probability distributions to
forest data, such as Gamma, Beta, Weibull, and Burr’s
system. Our group, formed by forest researchers and
two mathematicians interested in collaborating in
the search for alternatives to improve such fittings,
initially proposed the application of a polynomial of
degree n as a mathematical model for improving the
goodness-of-fit condition of a probability distribution.

A polynomial distribution of degree n was
developed, which satisfied the previously appointed
constraints very well. This polynomial distribution

consists of three mathematical functions and is a
“truncated pdf,” which shows great flexibility when
fit to forest data (Silva et al. 2003). In this model, the
first part consists of a positive potential increasing
function, the second part is a polynomial fit using the
least-squares method, and the third is a hyperbolic
function with y = 0 as an asymptote. The three
functions must meet the assumptions of a pdf, that
is, they must be continuous with non-negative and
convergent values in the interval (0 + o).

As mentioned in Section 4 of the manuscript,
when a probability distribution has more than three
parameters, the possibility of combinatorial solutions
grows exponentially; that is, their estimates obtained
with different software programs did not generate
appropriate values for variance, skewness, kurtosis,
and inflection points in many fitted cases. Only after
the development of an optimisation function by
the mathematician Dr. Abel Soares Siqueira, called
OPTIMBEL, this was possible to obtain a single
realistic solution for the five parameters of the new
proposed distribution.

Additionally, the scale transformation of the
variable X in the interval between zero and one
allowed us to obtain consistent parameters for all
sampled datasets to which the proposed distribution
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Figure 12. Beta and Burr distributions fitted to 80% of the DBH data from Acacia mearnsii and tested on the
remaining 20%, representing one instance from the 200 repetitions used in the cross-validation.

Table 7. Summary of the results from fitting the Péllico-Behling, Beta and Burr distributions to 80% of the DBH
data (n = 674) from Acacia mearnsii, and testing on the remaining 20%. This represents a single instance from the
200 repetitions used in the cross-validation.

Distribution fx) KS - KS -
fitting dataset testing dataset
(80%) (20%)
xﬂ.Bl?lZ
Péllico-Behling foy = (1.22506 + 2.81626 x*40239)439206 0.0322" 0.0595"
1 (x — 0)2.1157—1 a— x)3'2194_1
Beta o) = B21157,32198) (24 —z)eirsaeat . 0.0832° 0.1027%

2.2033
1825 2.2033 (m)

Burr fo = ’ x 2.20337(1825+1) 0.0965* 0.0804"
x[ + (13.6236) ]
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Figure 13. Fitted Péllico-Behling, Beta and Burr distributions tested on a new dataset from a 7.3-year-old Acacia

mearnsii stand.

was fitted. Evaluating the calculations of the
statistical estimates obtained from these fittings
allowed us to suggest new inclusion of restrictions
for the adjustments of the distribution, as presented
in the methodology. It is important to highlight that
the transformed scales open the possibility of using
the estimated parameters as seeds for fitting new
datasets.

The Péllico-Behling distribution after fitting to
the sampled datasets was compared with the fitted
Beta and Burr (4P) distributions, except for Silva’s
polynomial distribution that was fitted to the heights
of the species Eucalyptus saligna and the Pareto
distribution to mortality of 124 tropical species
from a fragment of a semideciduous seasonal forest,
to evaluate and verify its potential and robustness.
The first dataset is the height of Cariniana legalis
collected in a mixed tropical forest fragment in Cassia,
MG, Brazil; the second dataset is the DBH of Acacia
mearnsii collected in the plantation areas of Cristal

and Piratini in the state of Rio Grande do Sul, Brazil;
the third dataset is the heights of Eucalyptus saligna
from an experiment implemented in the Ibiti Forest
Park owned by the company Ripasa S.A. Celulose and
Paper, located in the municipality of Itarare, SP; and
the fourth dataset is the mortality of tropical species
(124) collected in a mixed tropical forest fragment
in Cassia, MG, Brazil. The proposed distribution
revealed reliable goodness-of-fit in the fitted cases.
The goodness of fit evaluated with the KS test in the
other distributions revealed in almost all cases to
be non-significant, but not better than the results
obtained for the proposed distribution, except for the
fitting of Silva’s distribution applied to the Eucalyptus
saligna dataset, because its pdf, as mentioned before,
is a truncated distribution with exceptional flexibility
due to the inclusion of a fourth-degree polynomial
segment in that model, capable of assimilating the
extreme cases of skewness.
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Through the cross-validation process applied to
the DBH data of Acacia mearnsii, it was observed
that the optimisation of the proposed PDF proved
to be an effective and highly accurate fitting method.
By ensuring that the adjusted coefficients remained
within an acceptable range, the procedure effectively
captured the characteristics of the data distribution.
This approach resulted in a close alignhment between
observed and estimated frequencies, highlighting
the capability and robustness of the statistical
analysis. Consequently, the use of the OPTMBEL and
OPTMBELR functions confirmed the reliability and
statistical robustness of the obtained results.

The results from one of the 200 cross-validation
iterations highlighted the stability of the fitting
performance of the Péllico-Behling distribution. The
KS test results were not significant for either the
fitting or testing datasets, indicating a good fit to the
data. In contrast, for the Burr and Beta distributions,
the KS test was non-significant only for the testing
dataset. This indicates that while the Péllico-Behling
distribution provided a consistent fit across both
datasets, it also demonstrated superior performance
in the goodness-of-fit assessment. These findings
were further supported when the previously fitted
distributions (shown in Tables 2, 3, and 4) were
applied to an independent dataset collected from a
7.3-year-old Acacia mearnsii stand not included in the
original model fitting. Once again, the Péllico-Behling
distribution was the only one that the Kolmogorov-
Smirnov test was not significant, reinforcing its
robustness, flexibility, and predictive capability for
modeling diameter distributions in independent
stands of this species.

The proven flexibility of the proposed distribution
in different cases of asymmetries and kurtosis in
forest datasets opens the possibility of using it for
monitoring one variable or a set of variables in long-
term experiments to assimilate their variations in
shape over time in the same forest population.

Conclusions

In this research, a new model called the Péllico-
Behling distribution was developed with five
parameters, capable of attaining maximum flexibility
of the resulting function.

The probability density function was generated
without using the derivative method, but instead a new
procedure called the aggregative method to avoid the
occurrence of parental parameters in the numerator
of the ratio that makes up the resulting function.

After fitting this new distribution with various
software to different datasets, the results were not
equal, and this divergence is due to an enormous
number of possible combinations of the five
parameters. Even though goodness of fit was obtained
in all adjustments, the statistical estimates were
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not correct in most cases, requiring an alternative
solution for this problem.

An optimisation function, OPTMBEL, was
developed to provide an appropriate solution for the
parameters and correct the statistical estimates of the
distribution.

The scale transformation of variable X in the
interval between zero and one was favored to obtain
consistent parameters for all sampled datasets, to
which the proposed distribution was fitted.

The new distribution is quite flexible and presents
better reliability when compared with beta, Burr
(3P), Silva, and Pareto distributions. The plots of the
pdfand cdf clearly show the flexibility of the proposed
distribution.

The proposed distribution fitted well to symmetric
and asymmetric data in unimodal cases and to
exponential occurrences of the variable X, which
qualifies it to model and monitor its behaviour in
different realities occurring in biopopulations.

List of abbreviations

cdf: continuous distribution function
pdf: probability density function
MLE: maximum likelihood estimators

Authors’ contributions

SPN: developed the derivation of the new distribution,
with its parameters and statistical estimators. He also
collected part of the data to illustrate its application
and evaluated the quality of the results obtained in all
tested populations; AB: dedicated his time adjusting
the distributions to the datasets, as well as to illustrate
the Pellico-Behling distribution and compare it with
other selected ones to evaluate its performance,
especially in skewed data behaviour.

Competing interests
The author(s) declare that they have no competing
interests.

Acknowledgements

We acknowledge the assistance of the mathematician
Dr Abel Soares Siqueira, who searched for an
alternative solution to obtain reliable values for the
parameters of the Péllico-Behling distribution using
an optimisation procedure. The resulting function
was denominated OPTMBEL and was developed using
the Julia language. We also thank PhD student Claiton
Nardini for his collaboration in the final formatting
of the manuscript for submission to the New Zealand
Journal of Forestry Science. We acknowledge CNPq for
support, Project 309824/2023-0.



Péllico Netto & Behling New Zealand Journal of Forestry Science (2026) 56:1

References

Bailey TL, Dell TD 1973. Quantifying diameter
distributions with the Weibull function.
Forest Science 19(2), 97-104. https://doi.
org/10.1093 /forestscience/19.2.97

Bailey RL 1980. Individual tree growth derived from
diameter distribution models. Forest Science
26(4), 626-632. https://doi.org/10.1093/
forestscience/26.4.626

Bezanson ], Karpinski S, Shah VB, Edelman A 2025.
Why we created Julia. https://julialang.org/
blog/2012/02/why-we-created-julia/

Binet JFM (1839. Memoire sur les intégrales définies
eulériennes et sur leur application a la théorie
des suites. France: Hachette Livre Bnf.

Binoti DHB, Binoti MLMS, Leite HG, Oliveira ] 2012.
Probability density functions for description
of diameter distribution in thinned stands of
Tectona grandis. Cerne 18(2), 185-196. https://
doi.org/10.1590/S0104-77602012000200002

Borders BE, Patterson WD 1990. Projecting
stand tables: a comparison of the Weibull
diameter distribution method a percentile-
based projection method and a basal area
growth projection method. Forest Science
36(2), 413-424. https://doi.org/10.1093/
forestscience/36.2.413

Bowling EH, Burkhart HE, Burk TE, Beck DE 1989.
A stand-level multispecies growth model for
Appalachian hardwoods. Canadian Journal of
Forest Research 19(4), 405-412. https://doi.
org/10.1139/x89-064

Breidenbach ], Glaser C, Schmidt C 2008. Estimation
of diameter distributions by means of airborne
laser scanner data. Canadian Journal of Forest
Research 38(6), 1611-1620. https://doi.
org/10.1139/x07-237

Burr IW 1942. Cumulative frequency functions. The
AnnalsofMathematical Statistics 13(2),215-232.
https://doi.org/10.1214 /aoms /1177731607

Burr IW 1968. On a general system of distributions
III. The simple range. Journal of the American
Statistical ~Association 63(322), 636-643.
https://doi.org/10.1080/01621459.1968.1100
9282

Burr IW, Cislak P] 1968. On a general system of
distributions I. Its curve shaped characteristics;
II. The sample median. Journal of the American
Statistical Association 63(322), 627-635.
https://doi.org/10.1080/01621459.1968.1100
9281

Cao QV 1997. A method to distribute mortality in
diameter distribution models. Forest Science

Page 23

43(3), 435-442. https://doi.org/10.1093/
forestscience/43.3.435

Cao QV 2022. Predicting future diameter distributions
given current stand attributes. Canadian Journal
of Forest Research 52(4), 561-567. https://doi.
org/10.1139/cjfr-2021-0216

Champernowne DG 1952. The graduation of income
distributions. Econometrica 20(4), 591-615.
https://doi.org/10.2307 /1907644

ChenY, Wu B, Min Z 2019. Stand diameter distribution
modeling and prediction based on maximum
entropy principle. Forests 10(10), 859. https://
doi.org/10.3390/f10100859

Ciceu A, Pitar D, Badea O 2021. Modeling the diameter
distribution of mixed uneven-aged stands in
the Southwestern Carpathians in Romania.
Forests 12(7), 958. https://doi.org/10.3390/
£12070958

Cramér H 1951. Mathematical methods of statistics.
Princeton: Princeton University Press.Dagum
CA 1977. New model of personal income
distribution: Specification and estimation.
Economie Appliquée 30 413-437. https://doi.
org/10.3406/ecoap.1977.4213

Duchateau E, Schneider R, Tremblay S, Dupont Leduc
L 2020. Density and diameter distributions of
saplings in naturally regenerated and planted
coniferous stands in Québec after various
approaches of commercial thinning. Annals
of Forest Science 77(2), 1-18. https://doi.
org/10.1007/s13595-020-0929-5

Ferose N, Aslam M 2013. Maximum likelihood
estimation-MLE of Burr Type V distribution
under left censored samples. WSEAS
Transactions on Mathematics 12(6), 657-669.

Fonseca TF, Marques CP, Parresol BR 2009. Describing
maritime pine diameter distributions with
Johnson’s SB distribution using a new all
parameter recovery approach. Forest Science
55(4), 367-373. https://doi.org/10.1093/
forestscience/55.4.367

Fisk PR 1961. The graduation of income distributions.
Econometrica 29(2), 171-185. https://doi.
org/10.2307/1909287

Goodwin AN 2022. Constraint shock in diameter
distribution models: the cost of ignoring
negative bounds. Forest Science 68(3), 246-258.
https://doi.org/10.1093 /forsci/fxac014

Guo H, Lei X, You L, Zeng W, Lang P, Lei Y 2022. Climate
sensitive diameter distribution models of larch
plantations in north and northeast China. Forest
Ecology and Management 506: 119947. https://
doi.org/10.1016/j.foreco.2021.119947


https://doi.org/10.1093/forestscience/19.2.97
https://doi.org/10.1093/forestscience/19.2.97
https://doi.org/10.1093/forestscience/26.4.626
https://doi.org/10.1093/forestscience/26.4.626
https://julialang.org/blog/2012/02/why-we-created-julia/
https://julialang.org/blog/2012/02/why-we-created-julia/
https://doi.org/10.1590/S0104-77602012000200002
https://doi.org/10.1590/S0104-77602012000200002
https://doi.org/10.1093/forestscience/36.2.413
https://doi.org/10.1093/forestscience/36.2.413
https://doi.org/10.1139/x89-064
https://doi.org/10.1139/x89-064
https://doi.org/10.1139/x07-237
https://doi.org/10.1139/x07-237
https://doi.org/10.1214/aoms/1177731607
https://doi.org/10.1080/01621459.1968.11009282
https://doi.org/10.1080/01621459.1968.11009282
https://doi.org/10.1080/01621459.1968.11009281
https://doi.org/10.1080/01621459.1968.11009281
https://doi.org/10.1093/forestscience/43.3.435
https://doi.org/10.1093/forestscience/43.3.435
https://doi.org/10.1139/cjfr-2021-0216
https://doi.org/10.1139/cjfr-2021-0216
https://doi.org/10.2307/1907644
https://doi.org/10.3390/f10100859
https://doi.org/10.3390/f10100859
https://doi.org/10.3390/f12070958
https://doi.org/10.3390/f12070958
https://doi.org/10.3406/ecoap.1977.4213
https://doi.org/10.3406/ecoap.1977.4213
https://doi.org/10.1007/s13595-020-0929-5
https://doi.org/10.1007/s13595-020-0929-5
https://doi.org/10.1093/forestscience/55.4.367
https://doi.org/10.1093/forestscience/55.4.367
https://doi.org/10.2307/1909287
https://doi.org/10.2307/1909287
https://doi.org/10.1093/forsci/fxac014
https://doi.org/10.1016/j.foreco.2021.119947
https://doi.org/10.1016/j.foreco.2021.119947

Péllico Netto & Behling New Zealand Journal of Forestry Science (2026) 56:1

Hatke MA 1949. A certain cumulative probability
function. The Annals of Mathematical Statistics
20(3), 461-463. https://doi.org/10.1214/
aoms/1177730002

Ivkovi M, Rozenberg P 2004. A method for describing
and modelling of within ring wood density
distribution in clones of three coniferous
species. Annals of Forest Science 61(8), 759-
769. https://doi.org/10.1051 /forest:2004072

Johnson NL, Kotz S 1970. Distributions in Statistics:
Continuous Univariate Distributions - 1. New
York: John Wiley & Sons.

Julia Language 2025. The Julia Programming
Language. https://julialang.org/

Kolmogorov A 1933. Sulla determinazione empirica di
una legge di distribuzione. Giornale dell’Istituto
[taliano degli Attuari 4, 83-91.

Loetsch F, Zohrer F, Haller KE 1973. Forest Inventory.
Munich: BLV Verlagsgesellschaft.

Liu C, Zhang L, Davis C], Solomon DS, Gove JH 2002.
A finite mixture model for characterizing the
diameter distributions of mixed species forest
stands. Forest Science 48(4), 653-661. https://
doi.org/10.1093 /forestscience/48.4.653

Liu C, Zhang SY, Lei Y, Newton PF, Zhang L 2004.
Evaluation of three methods for predicting
diameter distributions of black spruce (Picea
mariana), plantations in central Canada.
Canadian Journal of Forest Research 34(12),
2424-2432. https://doi.org/10.1139/x04-117

Machado SA, Bartoszeck ACPS, ueiredo Filho A,
Oliveira EB 2008. Efeito da densidade e do sitio
sobre as curvas de distribuicdo diamétrica em
bracatingais nativos (Mimosa scabrella Benth.),

da regido metropolitana de Curitiba. Ambiéncia
4(1), 37-50.

MirandaR, Fiorentin L, Péllico Netto S, Juvanho R, Dalla
Corte A 2018. Prediction system for diameter
distribution and wood production of Eucalyptus.
Floresta e Ambiente 25(3): e20160548. https://
doi.org/10.1590/2179-8087.054816

Nadarajah S, Pogany TK, Saxena RK 2012. On the
characteristic function for Burr distributions.
Statistics 46(3), 419-428. https://doi.org/10.10
80/02331888.2010.513442

Nanos N, Wubalem T, Montero G, Gil L, Alia R 2000.
Modelling resin production distributions
for Pinus pinaster Ait using two probability
functions. Annals of Forest Science 57(4), 369-
377. https://doi.org/10.1051 /forest:2000128

Pareto V (1897. Cours d’Economie Politique. Lausanne
and Paris: Rouge and Cie Vol. L.

Page 24

Pearson, K. (1900). On the criterion that a given
system of deviations from the probable in the
case of a correlated system of variables is such
thatit can be reasonably supposed to have arisen
from random sampling. Philosophical Magazine,
5(50),157-172.

Piva LRO, Ruza MS, Heck TO, Corte APD, Péllico Netto
S, Behling A 2020. Effect of high forest and
coppice regimes on the diameter distribution
of Eucalyptus urophylla S.T. Blakely stands.
Scientia Forestalis 48(127), 1-11. https://doi.
org/10.18671/scifor.v48n127.15

Qin]J, Cao QV, Blouin DC 2007. Projection of a diameter
distribution through time. Canadian Journal of
Forest Research 37(1), 188-194. https://doi.
org/10.1139/x06-216

RADAMBRASIL 1978. Levantamento de Recursos
Naturais. Brasilia: Departamento Nacional
da Producdo Mineral Ministério das Minas e
Energia 561 p.

Rodriguez RN 1977. A guide to the Burr Type XII
distributions. Biometrika 64(1), 129-134.
https://doi.org/10.1093 /biomet/64.1.129

RupSys P, Petrauskas E 2017. A new paradigm in
modelling the evolution of a stand via the
distribution of tree sizes. Scientific Reports 7(1),
1-13.  https://doi.org/10.1038/s41598-017-
16100-2

Sandoval S, Cancino ], Rubilar R, Esquivel E, Acuna
E, Muiioz F Espinosa M 2012. Probability
distributions in high-density dendroenergy
plantations. Forest Science 58(6), 663-672.
https://doi.org/10.5849 /forsci.11-028

Sanquetta CR, Oliveira Filho PC, Bartoszeck
ACPS, Durigan ME, Klechowicz N, Nisgoski S
1998. Efeito do espacamento de plantio em
reflorestamentos. 1. Eucalyptus grandis Hill ex
Maiden e Eucalyptus saligna Sm em Itararé SP.
Revista Académica 9(2), 41-52.

Schmidt LN, Machado SA, Pelissari AL, Silva GF 2019.
Dynamics of eucalyptus diameter distribution in
the state of Minas Gerais. Floresta e Ambiente
26(2), 1-9. https://doi.org/10.1590/2179-
8087.015617

Schmidt LN, Sanquetta MNI, McTague P, Silva GF,
Fraga Filho CV, Sanquetta CR, Scolforo RS
2020. On the use of the Weibull distribution in
modeling and describing diameter distributions
of clonal eucalypt stands. Canadian Journal of
Forest Research 50(10), 1050-1063. https://
doi.org/10.1139/cjfr-2020-0051

Scolforo JRS 2006. Biometria Florestal: Modelos de
Crescimento e Producdo. Lavras: UFLA/FAEPE.


https://doi.org/10.1214/aoms/1177730002
https://doi.org/10.1214/aoms/1177730002
https://doi.org/10.1051/forest:2004072
https://julialang.org/
https://doi.org/10.1093/forestscience/48.4.653
https://doi.org/10.1093/forestscience/48.4.653
https://doi.org/10.1139/x04-117
https://doi.org/10.1590/2179-8087.054816
https://doi.org/10.1590/2179-8087.054816
https://doi.org/10.1080/02331888.2010.513442
https://doi.org/10.1080/02331888.2010.513442
https://doi.org/10.1051/forest:2000128
https://doi.org/10.18671/scifor.v48n127.15
https://doi.org/10.18671/scifor.v48n127.15
https://doi.org/10.1139/x06-216
https://doi.org/10.1139/x06-216
https://doi.org/10.1093/biomet/64.1.129
https://doi.org/10.1038/s41598-017-16100-2
https://doi.org/10.1038/s41598-017-16100-2
https://doi.org/10.5849/forsci.11-028
https://doi.org/10.1590/2179-8087.015617
https://doi.org/10.1590/2179-8087.015617
https://doi.org/10.1139/cjfr-2020-0051
https://doi.org/10.1139/cjfr-2020-0051

Péllico Netto & Behling New Zealand Journal of Forestry Science (2026) 56:1

Silva EQ, Péllico Netto S, Machado SA, Sanquetta
CR 2003. Fung¢do densidade de probabilidade
aplicavel a ciéncia florestal. Floresta 33(3), 285-
294. https://doi.org/10.5380/rf.v33i3.2262

Smirnov N 1948. Table for estimating the goodness
of fit of empirical distributions. The Annals of
Mathematical Statistics 19(2), 279-281. https://
doi.org/10.1214/aoms/1177730256

Srivastava MS 1965. Characterizations of Pareto’s
distributions. The Annals of Mathematical
Statistics 36 361-362.

Tadikamalla PR 1980. A look at the Burr and
related distributions. International Statistical
Review 48(3), 337-345. https://doi.
org/10.2307/1402945

UFV- Universidade Federal de Vigosa 2010. Mapa
de Solos do Estado de Minas Gerais - Legenda
Expandida. Belo Horizonte.

Xu L, Wood GR, Woollons RC, Whyte AGD 1992.
Stand table prediction with Reverse Weibull
and Extreme Value density functions: some
theoretical considerations. Forest Ecology and
Management 48(1-2), 175-178. https://doi.
org/10.1016/0378-1127(92)90129-W

Waldy ], Kershaw Jr JA, Weiskittel A, Ducey M] 2022.
Diameter distribution model development of
tropical hybrid Eucalyptus clonal plantations in
Sumatera Indonesia: A comparison of estimation
methods. New Zealand Journal of Forestry
Science 52: 1-14. https://doi.org/10.33494/
nzjfs522022x151x

Zhang L, Gove JH, Liu C, Leak WB 2001. A finite
mixture of two Weibull distributions for
modeling the diameter distributions of rotated-
sigmoid uneven-aged stands. Canadian Journal
of Forest Research 31(9), 1654-1659. https://
doi.org/10.1139/x01-086

Zhang L, Packard KC, Liu C 2003. A comparison of
estimation methods for fitting Weibull and
Johnson’s SB distributions to mixed spruce-fir
stands in northeastern North America. Canadian
Journal of Forest Research 33(7), 1340-1347.
https://doi.org/10.1139/x03-054

Page 25


https://doi.org/10.5380/rf.v33i3.2262
https://doi.org/10.1214/aoms/1177730256
https://doi.org/10.1214/aoms/1177730256
https://doi.org/10.2307/1402945
https://doi.org/10.2307/1402945
https://doi.org/10.1016/0378-1127(92)90129-W
https://doi.org/10.1016/0378-1127(92)90129-W
https://doi.org/10.33494/nzjfs522022x151x
https://doi.org/10.33494/nzjfs522022x151x
https://doi.org/10.1139/x01-086
https://doi.org/10.1139/x01-086
https://doi.org/10.1139/x03-054

Péllico Netto & Behling New Zealand Journal of Forestry Science (2026) 56:1

Page 26

Appendicies

Appendix 1: OPTMBEL function

using CSV, DataFrames, Plots, ADNLPModels,
ForwardDiff, NLPModels, JSOSolvers, LinearAlgebra,
Logging, Printf,Percival, NLPModelsIpopt

gr()

function OPTMBEL(xdata,ydata)

lvar = [1e-16; zeros(4)]

model = (x,p) ->x"p[1] / ((p[2] + p[3] *
x"p[4])"p[5])

erro(x, y, p) = model(x, p) - y

A=1e-6
f(p) = sum(erro(xi, yi, p)”*2 for (xi, yi) in zip(xdata,
ydata)) + A * norm(p)”2
cp) =1
p[5] - 2p[1];
p[5]* pl4] - p[1] - p[4] - 2;
]p[5] *pl4] - 2p[4] + 1;
lcon = zeros(3)
ucon = fill(Inf, 3)
nlp = ADNLPModel(f, pO0, Ivar, fill(Inf, 5), ¢, Icon, ucon)
# nlp = ADNLPModel(f, p0, zeros(5), fill(Inf, 5))
local output
try
output = ipopt(nlp)
# output = percival(nlp, max_eval=10000, subsolver_
logger=ConsoleLogger())
# output = with_logger(NullLogger()) do
# tron(nlp, variant=:Newton, max_eval=10000)
# percival(nlp, max_eval=10000)
# end
catch ex
println(“Falhou para $filename: $ex”)
return
end
p = output.solution
residuo = round(norm(model.(xdata, Ref(p)) - ydata),
digits=4)

println(“p = $p”)
println(“status = , output.status)
println(“residuo = “ residuo)

open(“sylvio/saida.txt”, “w”) do io

println(io, “original = [)

for i = 1:length(output.solution)
println(io, pO[i])

end

println(io, “1")

println(io, “solution = [“)

for i = 1:length(output.solution)
println(io, output.solution[i])

end

println(io, “1”)

println(io, “restrigdo: [“)

cp = c(output.solution)

fori=1:3
println(io, cp[i])
end

println(io, “1”)
println(io, “status = “ output.status)

end

open(“sylvio/saida.tex”, “w”) do io
println(io, raw”\begin{center}”)
println(io, raw”\begin{tabular}{r|r}"”)
println(io, “inicial & otima \\\\ \\hline”)
r = round.(p, sigdigits=6)

fori=1:5
println(io, “$(pO[i]) & $(r[i]) \\\\")
end

println(io, raw”\end{tabular}”)
println(io, raw”\end{center}”)
end

end

#Function OPTMBEL(xdata,ydata)
OPTMBEL(X, Y)
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Appendix 2: ESPN function
using SpecialFunctions

function ESPN(a,b,c,d,e)

Média=((gamma(e-((a+2)/d)))*(gamma((a+2)/d)))/
(((c/b)*(1/d))*(gamma(e-((a+1)/
d)))*gamma((a+1)/d))

Var=(((gamma(e-((a+3)/d)))*(gamma((a+3)/d)))/
(((c/b)"(2/d))*(gamma(e-((a+1)/d)))*(gamma((a+1)/
d))))-(Média”2)

dp=sqrt(Var)

Moda=((a*b)/(c*(e*d-a)))"(1/d)

#Pontos de inflexdo

ZiU=(-b*c*((2*a)*(a-1)+d*e*(1-d-
2*a))+(((b"2)*(c"2)*((2*a*(a-d*e-
1)+d*e*(1-d))"2)-4*(b"2)*(c"2)*((a*(a-
1))+d*e*(d*e+1-2*a))*a*(a-1))"0.5))/
(2*(c"2)*(a*(a-1)+d*e*(d*e+1-2%a)))

ZiL=(-b*c*((2*a)*(a-1)+d*e*(1-d-
2*a))-(((b"2)*(c"2)*((2*a*(a-d"e-
1)+d*e*(1-d))"2)-4*(b"2)*(c"2)*((a*(a-
1))+d*e*(d*e+1-2*a))*a*(a-1))"0.5))/
(2*(c"2)*(a*(a-1)+d*e*(d*e+1-2%a)))

xiU=Ziu”(1/d)

xiL=ZiL*(1/d)

#Assimetria (S)

EX3=((gamma(e-((a+4)/d)))*(gamma((a+4)/d)))/
(((c/b)*(3/d))*(gamma(e-((a+1)/
d)))*gamma((a+1)/d))

m3=EX3-3*(Média*(Var+Média”"2))+2*(Média” 3)

S=m3/(dp”"3)

#Curtose

EX4=((gamma(e-((a+5)/d)))*(gamma((a+5)/d)))/
(((c/b)*(4/d))*(gamma(e-((a+1)/
d)))*gamma((a+1)/d))

m4=EX4-4*(Média*(m3+3*(Média*(Var+Média"2))-
2*Média”3))+6*(Média” 2*(Var+Média” 2))-3*Média"4

Curtose=(m4/(dp”4))-3

println(“Média: “, Média)

println(“Varidncia: “ Var)

println(“Despio-padrao: “, dp)

println(“Moda: “, Moda)

println(“Pontos de infelxao: “ [xiL,xiU])

println(“Assimetria: % S)

println(“Curtose: “, Curtose)
end

ESPN(a,b,c,de)
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Appendix 3: OPTMBELR function

using CSV, DataFrames, Plots, ADNLPModels,
ForwardDiff, NLPModels, JSOSolvers,
LinearAlgebra,Logging, Printf,Percival,
NLPModelsIpopt, StatsBase

#Dados de biomassa total e dap de acdcia negra
X=CSV.read(“acacian.csv”, DataFrame)

function OPTMBEL (xdata,ydata,p0)
lvar = [1e-16; zeros(4)]
model = (x,p) -> x*p[1] / (p[2] + p[3] *
x"p[4])*p[5])
erro(x, y, p) = model(x, p) -y

A=1e-6
f(p) = sum(erro(xi, yi, p)*2 for (xi, yi) in zip(xdata,
ydata)) + A * norm(p)”2
c(p) =1
p[5] - 2p[1];
p[5] * p[4] - p[1] - p[4] - 2;
]p[5] “pl4] - 2p[4] + 1;
lcon = zeros(3)
ucon = fill(Inf, 3)
nlp = ADNLPModel(f, p0, lvar, fill(Inf, 5), ¢, Icon, ucon)

#nlp = ADNLPModel(f, p0, zeros(5), fill(Inf, 5))
local output
try
output = ipopt(nlp)
# output = percival(nlp, max_eval=10000, subsolver_
logger=ConsoleLogger())
# output = with_logger(NullLogger()) do
# tron(nlp, variant=:Newton, max_eval=10000)
# percival(nlp, max_eval=10000)
# end
catch ex
println(“Falhou para $filename: $ex”)
return
end
return output.solution
end

# Fungdo de validagdo
function OPTMBELR(X::DataFrame, R::Int64,
p0::Vector{Float64}, out::String)
if length(p0) !==
error(“Erro: O tamanho do vetor ndo pode ser
diferent de 5.”)
end
plot()
Tabelal = DataFrame()
Tabela2 = DataFrame()
Tabela3 = DataFrame()
Tabela4 = DataFrame()
resultado_grap = Matrix{Float64}(undef, 1000,R)
coef = Matrix{Float64}(undef, R, 5)
KScalc = Vector{Float64}(undef,R)
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foriin 1:R

Minimo=minimum(X.DAP)
Maximo=maximum(X.DAP)
Z=(X.DAP.-Minimo)./(Maximo-Minimo)

#Limites de classes (|- Fechado para a esquerda e
aberto para a direita)

x=DataFrame(ZDAP=Z)

x=Xx.ZDAP

n_individuos = size(x,1)

df = DataFrame(ZDAP=Z)

global sample_1 = sample(1:nrow(df),
Int64(round((n_individuos*0.80), digits = 0)),
replace=false)

df1 = df[sample_1, :]

test_rows = setdiff(1:nrow(df), sample_1)

global df teste = df[test_rows, :]

println(df_teste)

x1=df1.ZDAP

#Limites de classes (|- Fechado para a esquerda e
aberto para a direita)

x=x1

Classe_1=x[(0 .<=x.<0.0833)]
Classe_2=x[(0.0833 .<=x.< 0.1667)]
Classe_3=x[(0.1667 .<=x.< 0.2500)]
Classe_4=x[(0.2500 .<=x.< 0.3333)]
Classe_5=x[(0.3333 .<=x.< 0.4167)]
Classe_6=x[(0.4167 .<=x.< 0.5000)]
Classe_7=x[(0.5000 .<=x.< 0.5833)]
Classe_8=x[(0.5833 .<=x.< 0.6667)]
Classe_9=x[(0.6667 .<=x.< 0.7500)]

Classe_10=x[(0.7500 .<=x.< 0.8333)]
Classe_11=x[(0.8333 .<=x.< 0.9167)]
Classe_12=x[(0.9167 .<=x.< 1)]

#Frequéncia absoluta 80% dos dados
f1_Classel=length(Classe_1)/size(sample_1, 1)
f1_Classe2=length(Classe_2)/size(sample_1, 1)
f1_Classe3=length(Classe_3)/size(sample_1, 1)
f1_Classe4=length(Classe_4)/size(sample_1, 1)
f1_Classe5=length(Classe_5)/size(sample_1, 1)
f1_Classe6=length(Classe_6)/size(sample_1, 1)
f1_Classe7=length(Classe_7)/size(sample_1, 1)
f1_Classe8=length(Classe_8)/size(sample_1, 1)
f1_Classe9=length(Classe_9)/size(sample_1, 1)
f1_Classe10=length(Classe_10)/size(sample_1, 1)
f1_Classel1=length(Classe_11)/size(sample_1, 1)
f1_Classe1l2=length(Classe_12)/size(sample_1, 1)

x2 = df_teste.ZDAP

Classe_1=x2[(0 .<=x2.< 0.0833)]

Classe_2=x2[(0.0833 .<=x2 .< 0.1667)]
Classe_3=x2[(0.1667 .<=x2 .< 0.2500)]
Classe_4=x2[(0.2500 .<=x2 .< 0.3333)]]
Classe_5=x2[(0.3333 .<=x2.< 0.4167)]
Classe_6=x2[(0.4167 .<=x2 .< 0.5000)]
Classe_7=x2[(0.5000 .<=x2 .< 0.5833)]

Page 28

Classe_8=x2[(0.5833 .<=x2 .< 0.6667)]
Classe_9=x2[(0.6667 .<=x2 .< 0.7500)]
Classe_10=x2[(0.7500 .<=x2 .< 0.8333)]
Classe_11=x2[(0.8333 .<=x2.< 0.9167)]
Classe_12=x2[(0.9167 .<=x2 .< 1)]

#Frequéncia absoluta 20% dos dados
f1_Classel_30=length(Classe_1)/(nrow(X) -
size(sample_1, 1))
f1_Classe2_30=length(Classe_2)/(nrow(X) -
size(sample_1, 1))
f1_Classe3_30=length(Classe_3)/(nrow(X) -
size(sample_1, 1))
f1_Classe4_30=length(Classe_4)/(nrow(X) -
size(sample_1, 1))
f1_Classe5_30=length(Classe_5)/(nrow(X) -
size(sample_1, 1))
f1_Classe6_30=length(Classe_6)/(nrow(X) -
size(sample_1, 1))
f1_Classe7_30=length(Classe_7)/(nrow(X) -
size(sample_1, 1))
f1_Classe8_30=length(Classe_8)/(nrow(X) -
size(sample_1, 1))
f1_Classe9_30=length(Classe_9)/(nrow(X) -
size(sample_1, 1))
f1_Classe10_30=length(Classe_10)/(nrow(X) -
size(sample_1, 1))
f1_Classe1l1_30=length(Classe_11)/(nrow(X) -
size(sample_1, 1))
f1_Classe12_30=length(Classe_12)/(nrow(X) -
size(sample_1, 1))

Classe=[1,2,3,4,5,6,7,8,9,10,11,12]

global Centro_de_Classe=[0.0417, 0.1250, 0.2083,
0.2917,0.3750, 0.4583,0.5417, 0.6250, 0.7083, 0.7917,
0.8750, 0.9583]

f1=[f1_Classel,f1_Classe2,f1_Classe3, f1_Classe4,f1_
Classe5, f1_Classe6,f1_Classe7, f1_Classe8,f1_Classe9,f1_
Classe10,f1_Classe11,f1_Classe12]

Tabelal=DataFrame(i=Classe, CC=Centro_de_
Classe,fi=f1)

#Tabela de frequéncia

f1=[f1_Classe1_30,f1_Classe2_30,f1_Classe3_30, f1_
Classe4_30,f1_Classe5_30, f1_Classe6_30,f1_Classe7_30,

f1_Classe8_30,f1_Classe9_30,f1_Classe10_30,f1_
Classe11_30,f1_Classe12_30]

Tabela2=DataFrame(i=Classe, CC=Centro_de_
Classe,fi=f1)

#Frequencia Observada
Tabela3 = cumsum(Tabela2.fi)./sum(Tabela2.fi)

#Inserir o resultado do ajuste
pl = DIST.OPTMBEL(Tabelal.CC, Tabelal.fi, p0)

coefli,:] =p1l

f(x) =x"coef[i,1] / ((coefli,2] + coef[i,3] *
x”coef[i,4])"coefli,5])
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xGrid = range(0, 1, length = 1000)
XG =range(0, 1, length = 1000)
YG1=f.(xGrid)

resultado_grap[:i] = YG1

ifi===1
plot()
global plt_normal = plot(XG,[resultado_grap[:,1]],
linewidth = 2 linecolor = :black, legend = false, xlabel =
“Class center (x)”", ylabel = “f(x)”, xticks = round.(Centro_
de_Classe, digits = 2))
else
global plt_normal = plot!(XG,[resultado_grap[:,i]],
linewidth = 2 linecolor = :black, legend = false)

end

ifi===R
forjin 1:R
]f] ===1
plot()
global plt_acumulado = plot(XG,
cumsum((resultado_grap[:,1]./sum(resultado_
grap[:,1])), dims = 1), xlabel = “Class center (x)”, ylabel
= “F(x)", xticks = round.(Centro_de_Classe, digits = 2))
else
global plt_acumulado = plot!(XG,
cumsum((resultado_grap[:,j]./sum(resultado_grapl:,j])),
dims = 1), legend = false)
end
end
end

# Frequencia estimada
Tabela4 = f.(Centro_de_Classe) #normal

AcumuladoFest = cumsum(Tabela4)/sum(Tabela4)
#Acumulada

#Tabela para calculo KS

global Tabela5 = DataFrame(CC = Centro_de_Classe,
FO = Tabela3, FE = AcumuladoFest, Diff = abs.(Tabela3
.- AcumuladoFest))

#Kscalculado
global KScalc[i] = maximum(Tabela5.Diff)

#Ks tabelado
global Kstab = 1.36/(sqrt((nrow(X) - size(sample_1,
1))
global teste = coef
end
menor_kscalc = (length(KScalc[(KScalc .<=
Kstab)])/R) * 100

minimum_values = minimum(coef, dims = 1)
maximum_values = maximum/(coef, dims = 1)

#FEixo X colocar centro de classes
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histogram(KScalc, bins = 10, label = “Calculated
Value”, xlabel = “Ks-values”, ylabel = “Frequency”)
savefig(plot!([Kstab, Kstab], [0,30], label = “Critical
Value”), “$out\\Ks_values”)
savefig(histogram(coef[:,1], bins = range(minimum_
values[1], maximum_values[1], 10), title = “a”, legend
= false, xlabel = “Values of the parameter a”, ylabel =
“Frequency”), “$out\\Results of paramter a”)
savefig(histogram(coef[:,2], bins = range(minimum_
values[2], maximum_values[2], 10), title = “b”, legend
= false, xlabel = “Values of the parameter b”, ylabel =
“Frequency”), “$out\\Results of paramter b”)
savefig(histogram(coef[:,3], bins = range(minimum_
values[3], maximum_values[3], 10), title = “c”, legend
= false, xlabel = “Values of the parameter c”, ylabel =
“Frequency”), “$out\\Results of paramter c”)
savefig(histogram(coef[:,4], bins = range(minimum_
values[4], maximum_values[4], 10), title = “d”, legend
= false, xlabel = “Values of the parameter d”, ylabel =
“Frequency”), “$out\\Results of paramter d”)
savefig(histogram(coef[:,5], bins = range(minimum_
values[5], maximum_values[5], 10), title = “e”, legend
= false, xlabel = “Values of the parameter e”, ylabel =
“Frequency”), “$out\ \Results of paramter e”)
savefig(plt_normal, “$out\\Plot Normal”)
savefig(plt_acumulado, “$out\\Plot Acumulado”)
println(“$menor_kscalc%, propor¢do de vezes que
o valor de KS calculado foi menor que o valor de KS
tabelado”)
end

OPTMBELR(X, 100, [1.0,2.0,3.0,4.0,5.0], “G:\\\
Resultados2\\”)



