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Abstract

Background: Biological populations were studied to understand their ecology and to evaluate the relationships 
between living beings that comprise them. Mathematical functions used in probabilistic models should present 
multifunctionality, sensitivity, and flexibility to appropriately describe a natural phenomenon. The objective of 
this study was to develop a new probabilistic distribution with five parameters to maximize its flexibility and 
ensure a better goodness of fit when compared to other important distributions, such as Beta, Burr, Silva and 
Pareto.

Methods: New distribution estimators were derived using the mathematical expectation of central and dispersion 
moments. Estimated values of the parameters were obtained using an optimization process developed by Abel 
Soares Siqueira, research software engineer at the Netherlands eScience Center in Amsterdam. Data for the 
application of the developed distribution method were collected at different sites in Brazil, where asymmetry 
and kurtosis were detected.

Results: The Pellico-Behling Probability Distribution (5P) was applied to fit the datasets for Cariniana legalis, 
Acacia mearnsii, and Eucalyptus saligna. For the average mortality of 124 species, it was used with (4P). The 
distribution fitted  to sampled datasets was compared with the fitted Beta and Burr (4P) distributions, except 
for Silva’s polynomial distribution that was fitted to the heights of the species Eucalyptus saligna and the 
Pareto distribution to mortality of 124 tropical species from a fragment of a semideciduous seasonal forest, to 
evaluate and verify its potential and robustness.

Conclusions: The new distribution with five parameters is flexible and produced better goodness of fit than 
those obtained from the other distributions used for comparative purposes.
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beings throughout their life process, it is difficult to 
describe them accurately because life processes are, 
in essence, complex, and many of them are strongly 
influenced by fluctuations arising from the actions of 
biotic and abiotic environmental variables.

Mathematical functions used as probabilistic models 

Introduction 
Biological populations are studied to understand 
their ecology and to evaluate the relationships 
between living beings that comprise them. Although 
numerous mathematical models have been used to 
characterise the phenomena and behaviours of living 
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require certain features, such as multifunctionality, 
sensitivity, and flexibility to appropriately describe a 
natural phenomenon.

In various circumstances working with random 
variables in the forest environment, we encounter 
unusual occurrences such as positive and negative 
asymmetries, discontinuity points within the sample 
datasets, and the occurrence of accentuated kurtosis. 
In these samples, few probabilistic distributions are 
able to assimilate these characteristics.

As a result of these experiences, we decided to 
deepen our knowledge of how such occurrences could 
be described by a single probability function, and the 
only plausible way to ensure this was to increase the 
flexibility of a mathematical model whose structural 
composition could be integrated by more than 
three parameters, although this path is generally 
discouraged by mathematical statisticians.

The studies and research reported in this study 
were the result of over 20 years of working with 
certain distributions, especially Gamma and Beta, 
because of their characteristics and special ability to 
describe the behaviours of many biological variables.

Genesis and historical remarks
The first function of interest for describing biological 
behaviour is known as the gamma function, 
introduced by Leonhard Euler (born April 15, 1707, 
in Basel, Switzerland, who died September 18, 1783, 
in Saint Petersburg, Russia), that is, the factorial of a 
series of integers, as presented in (1):
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As can be seen, the gamma function is not convergent 
at the point where 0=u . To convert it as a probability 
density function (pdf), a constant β was added to it, 
and with transformations, it became convergent from 
zero to infinity and was called the Gamma distribution.
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Leonhard Euler and Adrien-Marie Legendre 
(born on September 18, 1752, in Paris, France and 
who died on January 10, 1833, in the same place) 
simultaneously developed the integral resulting from 
the product of two factorials, which became known 
as the Euler integral of the first type in the early 
nineteenth century. The derivation of the product of 
the two gamma functions is presented in (3).
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After applying these two integrals and transforming 
them into polar coordinates to operate them more 
rationally, they finally obtained:
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This last integral was later named by Jacques 
Philippe Marie Binet (born on February 2, 1786, in 
Rennes, France and who died on May 12, 1856, in 
Paris, France) as a beta function and is identified as 
B(x,y) in (4).

                                                                                                 (4)

Therefore,                                                                             (5)

Next, we consider the derivation of Legendre’s 
double formula, which results in a more attractive and 
felixible form of the beta function, that is, taking it in 
the condition obtained in (6).
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If the beta function is placed in the condition 
in which the representations of the Bessel and 
hypergeometric functions can be developed, then 
taking the form B (x+1, y+1) to facilitate the derivation, 
we have (7).
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                                                         and 

Substituting in (7) and rationalising we have:

and, consequently, in the most usual way we have:

                                                             
                                                                                                 (8)

The beta function, as defined in (6), assumes that 
the variable u only exists in the interval 0 ≤ u ≤ 1. 
Extending this interval to a ≤ u ≤ b such that b > a, 
then placing it with a variation in this range results in:

and, consequently, the beta function, in these 
circumstances, results in (9):

                                                                                                 (9)

Its application to the theory of probabilities, using 
the property that the integral of the pdf, in the interval 
of variable x between zero and infinity, must be equal 
to one, Cramér (1951), results in:

In modern statistical notation, variables of a 
probability function are denoted by the letters x and 
y to avoid misinterpretation. The parameters of the 
beta function are now named α and β, and the variable 
is considered as x; thus, the general form of the beta 
function is presented in (10):

                                                                                                                        (10)

Loetsch, Zöhrer, & Haller (1973) applied it to fit 
diameter distributions using datasets from forests 
of Germany, where a and b are the minimum and 
maximum diameters, respectively.

Scolforo (2006) presented it with substitutions to 
facilitate the practical comprehension by ecologists 
and forest managers as follows:

                                                                                              (11)
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Here, we introduce the work of Burr (1942), 
who suggested 12 different forms of cumulative 
distribution functions which might be useful for 
fitting to variables from a variety of datasets, 
including biological and ecological variables from 
the forest environment. The relevance of choosing 
one of these forms of distribution is to facilitate the 
mathematical analysis to which it is subjected, while 
attaining the condition of goodness of fit as much as 
possible (Tadikamalla 1980).

Many attempts have been made to clarify and 
apply the 12 probability distributions derived from 
cumulative functions that integrate Burr’s system 
(Burr 1968) and others, to different datasets, such as by 
Burr & Cislak (1968), who showed that Burr’s system 
covered almost all domains of the main Pearson Type 
IV and VI distributions, and an important part of that 
is the Type I or the beta distribution. Hatke (1949), 
after evaluating the cumulative probability function: 

as proposed by Burr (1942), stated that this approach 
was a practical tool for fitting a smooth curve to 
observed data. The fitting method was comparable 
to that reported by Pearson (1900) and others and 
was accomplished with simple calculations. These 
distributions are fitted by the method of moments, 
and their theoretical frequencies are obtained by 
the evaluation of consecutive values of F(x) using 
calculating machines and logarithms, and by taking 
the derivative of NF(x). No integration or heavy 
interpolation is involved, such as may be required 
in fitting a classical frequency function; Rodriguez 
(1977) focused specifically on Burr’s family of 
distributions of type XII, with the generic cumulative:

function, which yields a wide range of values of 
skewness and kurtosis; and Ferose & Aslam (2013), 
who derived maximum likelihood estimators (MLE) 
to obtain the parameters of a Burr type V distribution 
based on left-censored samples, including confidence 
intervals for the parameters. A simulation study was 
also conducted to investigate the performance of 
point and interval estimates.

Type XII is the most well-known applied Burr 
distribution to many datasets of different scientific 
origins because it yields a wide range of values of 
skewness and kurtosis and can be used to fit almost 
any given set of unimodal data (Nadarajah et al. 
2012); its pdf is presented in (12).
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Burr’s distributions have appeared in the literature 
under different names because of their relationship 
with various other distributions, namely, the Pareto 
Type II (Lomax) when c=1, Srivastava (1965); when 
k=1 it becomes the Fisk distribution (Fisk 1961), which 
is a special case of the Champernowne distribution 
(Champernowne 1952); in its inverse case; for 1/X 
it becomes Dagum’s distribution (Dagum 1977), and 
other special cases such as the Compound Weibull, 
Weibull-Exponential, logistic, log-logistic, Weibull, 
and Kappa family of distributions (Tadikamalla, 
1980). These distributions can be used to model a 
wide variety of phenomena, including forest variables, 
to describe ecological and production information 
throughout a forest’s lifetime. 

The objective of this study was to develop a new 
distribution with five parameters; very flexible and 
with better goodness of fit when compared to Beta, 
Burr (3P), Silva, and Pareto distributions.

Methods 

Development of the new probability density 
function 
Before presenting the derivation of the probabilistic 
distribution proposed by Péllico-Behling, some 
considerations should be made: 

(1) The statistical procedures used by Burr (1942) 
presuppose designing a cumulative probabilistic 
function by order statistics and deriving it to obtain 
the probability density function. This is called the 
derivative method; however, as can be seen in the 
several functions mentioned above, this procedure 
generates parental parameters in the numerator of 
the ratio that makes up the resulting function; and 

(2) Since we wished to obtain a probability density 
function with five parameters capable of attaining 
maximum flexibility of the resulting function, 
we decided to generate the probability density 
function using another statistical procedure called 
the aggregative method.

Considering the beta function as presented in 
Equation 8 and with the transformations already 
incorporated into it, we have (13).

                                                                                              (13)

Several applications of the beta distribution to 
diameter and height data of trees from native and 
planted forests in Brazil showed that it was not 
sufficiently flexible for good fitness in cases of severe 
asymmetry and kurtosis, duly evaluated by applying 
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the Kolmogorov-Smirnov test (Kolmogorov 1933; 
Smirnov 1948).

The flexibility of the beta function was initially 
achieved by expanding it from two to three parameters 
as follows:

Include transformations in the Bessel function 
without mischaracterising it as the beta function, i.e.,

                                                                                              (14)

Taking only the partial components presented 
below, it can be shown that they are the result of a 
transformed integral:
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By setting bt = u, deriving  bdt = du , dt = du/b, and 
replacing them, we have:
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Consequently, by naming the resulting integral with 
the three parameters of PB (b, α, β) we have:

                                                                                               (17)

Naming α - 1 = a, α+β = c and u = x, the new function 
with three parameters is set to:

 f(x) = xa/(b +x)c                                                                 (18)

Some families of distributions have been derived 
to approximate some already known distributions 
as much as possible. These families are commonly 
referred to as distribution or frequency curve systems. 
Although theoretical explanations may highlight the 
relevance of a system, such arguments must first 
be evaluated in terms of their practicality. Some 
additional requirements are the ease of computing 
and algebraic manipulation; however, it is desirable 
to include as few parameters as possible in defining a 
system member. In most circumstances, it is sufficient 



to have up to four parameters. Normally, at least three 
parameters are needed, and the inclusion of a fourth 
parameter can bring about a notable improvement, 
but it should be critically evaluated whether this 
decision is worthwhile (Johnson & Kotz 1970). Even 
considering this important warning, we decided to 
incorporate two more parameters c and d into the 
beta distribution to make it as flexible as possible.

 
	  		   	                              (19)

By making α = τ/d and substituting it into the 
resulting new function, we have:

					                 (20)
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and
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Replacing them we have:

					                 (21)

Finally, making τ ‒ 1 = a,  ( τ/d) + β = e and replacing 
them in the integral, we have: 

					                 (22)
The new function with five parameters is therefore 
defined as:
   					                 (23)

where a, c, d, and e are the parameters responsible 
for the shape of the curve, which makes it flexible in 
its fitting to occurrences of asymmetry and kurtosis, 
which forces it to reach the modal point, and b is the 
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parameter responsible for the change in position 
along the x-axis.

For the transformation of the proposed model 
into a probability density function, considering the 
property specified by Cramér (1951), we have:

                                                                                               (24)

Consequently, the pdf(x) is defined as Case 1:

                              	                                                               (25) 

where k1 is the inverse of the result of the integration 
of f(x)

                                                                                                  (26)

The cumulative distribution function can be 
obtained by integrating it into cumulative intervals 
for variable x for x ≥ 0, as shown in (20):

                                                                                               (27)

The solution for this integral, instead of applying 
complicated hypergeometric functions to obtain the 
cumulative function of the Péllico-Behling distribution, 
was to calculate the additive rectangular areas of 
small classes (1/1,000 in size), as an approximation 
to the areas obtained by the successive integration 
procedure, as presented in (21):

                                                                                                        (28)

where k is the number of class intervals that are as 
small as possible, which in the present case was 1,000.   

Derivation of Distribution Parameters      
The distribution estimators were derived using 
the mathematical expectation of the central and 
dispersion moments.

Arithmetic Mean:

					                 (29)
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                                                            Arithmetic mean (31)
	

Variance:

					                 (32)
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                                                                            Variance (34)

and the standard deviation is equal to:

                                                                                              (35)

Mode:
Taking the function as formalised in (23), we have:

 					                 (36)

Deriving it with respect to x, we have

                                                                                              (37)

Making d f(x)/dx = 0 and equalising, we have:

				                                 (38)

                                              Mode                                      (39)

Inflection Points:
Consider the result of the first derivative of f(x), as 
stated in (40), and we have:

					                  (40)

Simplifying, we have:

                                                                                               (41)

Taking now the second derivative of (41), we have:

					                  (42)
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Making d2 f(x)/dx = 0 and equalising, we have: 

					                 (43)

Simplifying we have:

					                 (44)

Expanding the terms we have:

					                 (45)

Note that with all equality terms are multiplied by xa-2 

and simplifying we have:

				       	             (46)

As can be seen, the algebraic result is an equation 
of the second degree, which is presented in a more 
appropriate manner, resulting in:

					                 (47)

Rationalising, we have:

					                 (48)

Making up x2d = z2 and solving it, we have:

					                  (49)

Rationalising, we have:

and  	            gives us the inflection points                      (50)

Asymmetry (A):
Considering the result of the third moment of pdf(x) 
in (23), we have:

                                                                                              (51)

or: 					                  (52)

and:					                  (53)

The asymmetry A is obtained by:                               (54)

Where σ is the standard deviation derived in (35).

Kurtosis (K):
Considering the result of the fourth moment of pdf(x) 
in (23), we have:

                                                                                              (55)

or: 

                                                                                              (56)

and:					                 (57)

The Kurtosis K, given that its value in the normal 
distribution is equal to three, is obtained by:

                                                                                               (58)

Where σ is the standard deviation derived in 
(Equation 35).

Conditions for the existence of the probability 
density function
The existence of the pdf(x) requires that the following 
conditions must be met:

(1) The coefficients must assume values greater than 
zero, that is, a > 0, b > 0, c > 0, d > 0, e > 1, and e 
≥ 2a, which are imposed by pdf(x) itself (Equation 
26) to ensure the characteristic of unimodality 
and avoid the occurrence of indeterminacy; and

(2) Considering the parameters, arithmetic mean 
(Equation 31) and variance (Equation 34), the 
restriction d ≠ (a + 2) is added.
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Simplifications of the derived function
As can be seen, the derived function has five 
parameters, namely, a, b, c, d, and e, as presented in 
(Equation 25), which is the most generic unimodal 
distribution and named Case 1.

Case 2. By setting a = 0, the distribution becomes 
hyperbolic and can be summarised as follows:

The Péllico-Belling Hyperbolic function: 

                                                                                               (59)

Arithmetic mean                                                                 (60)

Variance                                                                              (61)

Mode: x2 = 0	       There is no mode                                                    (62)

Inflexion Points: In this case, there are no inflexion 
points. 

Asymmetry: 				                 (63)

and:					                    (64)

The asymmetry is obtained in (Equation 65):

                                                                                                                          (65)

Kurtosis:				                 (66)

and:

					                 (67)
	

The kurtosis is obtained in (68) is:

					                  (68)

Data
Data for the application of the developed distribution 
were collected at different sites in Brazil, where 
appropriate circumstances of asymmetry and kurtosis 
were detected.

Mortality and evaluation of species in tropical 
forests (Positive Asymmetry, Kurtosis, and 
application of case 2 of the distribution)
Sample data were collected in a fragment of the semi-
deciduous seasonal forest located at  Reata Farm, in 
Cassia, MG, Brazil. Nine sampling units of 1 ha each 
were measured and subdivided into 100 subunits 
of 100 m2, totalling 9 ha as primary units and 900 
subunits, in which the census was conducted.

The area is in the municipality of Cassia, 
southern region of the state of Minas Gerais, Brazil, 
with approximately 200 ha and 90 ha of seasonal 
semideciduous forest in a climax state that is 
untouched and located between: latitude 20°20’ and 
20°40’ S and longitude 46°40’ and 47°00’ W.

According to RADAMBRASIL (1978), the studied 
region is characterised by the remaining morpho-
structural domain of folded chains, showing traces of 
these structures, with occasional exposures of their 
basements. The area in question is in the Alto do Rio 
Grande Plateau Region, with average altitudes around 
680 m above sea level.

According to UFV (2010), in this region, soil 
variations classified as Dystrophic Red Latosol occur, 
featuring mineral, non-hydromorphic soils, and more 
specifically, the typical moderate A, medium texture, 
sub-deciduous forest phase, flat relief, and smooth 
undulated type.

The climate in the region of Cassia, MG, Brazil, 
according to Köppen’s classification, is of the Cwa 
(altitudinal tropical) type, with rigorous and rainy 
summers, an annual precipitation of 1200–1400 
mm, and average annual temperatures of 26.5 °C 
(maximum) and 19.5 °C (minimum).

Data on the height distribution of the species 
Cariniana legalis (Mart.) Kuntze and an average 
mortality of 124 species, evaluated in the period 1996–
2001 from this area, were used to illustrate the fit of 
the new probability distribution to height data with 
strong positive asymmetry and mortality by diameter 
classes under conditions common in tropical forests, 
such as those with negative exponential shape.

Plantation 1 (Symmetry)
Data from eight temporary plots sampled in 
commercial plantations of black wattle in the 
municipalities of Cristal and Piratini in the state of Rio 
Grande do Sul, Brazil within seven years were used for 
the present study. The areas are located at 30°59’59” 
S and 52°02’54” W, and 31°26’52” S and 53°06’14” W, 
respectively. The local altitudes vary between 320 m 
and 370 m above sea level.
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According to the Köppen climate classification, 
the climate of the region for Cristal is Cfa or Piratini 
Cfb. The average annual temperature is 18.0 °C for 
Cristal and 16.5 °C for Piratini and the average annual 
precipitation is 1309 mm for Cristal and 1507 mm for 
Piratini.

The study sites were gently undulating to 
undulating, with the soil type Neossols Regolithic for 
Cristal and soil type Litholic Neossols for Piratini.

Data from the diameter distribution of Acacia 
mearnsii De Wild from these areas were used to 
illustrate the fit of the new probability distribution for 
the situation in which the data are close to normality.

Plantation 2 (Negative Asymmetry)
Data illustrating negative asymmetry were sampled 
in an experiment implemented in the Ibiti Forest 
Park owned by the company Ripasa S.A. Cellulose and 
Paper, located in the municipality of Itararé, SP (data 
kindly made available by Professor Dr. Carlos Roberto 
Sanquetta – Federal University of Paraná). The local 
geographic coordinates are: 24°09’ S and 49°19’ 
W at an altitude of 900 m. According to the Köppen 
climate classification, the climate of the region is Cfa, 
sub-humid sub-temperate, with an annual average 
temperature of 20.3 °C and an annual average 
precipitation of 1371 mm.

The study site is slightly undulating, with soil of a 
deep typical dark red dystrophic Latosol type.

Data of the species Eucalyptus saligna Sm. from 
this area was used to illustrate the fit of the new 
probability distribution to a height dataset with 
strong negative asymmetry.

The data of the three species mentioned and 
mortality of 124 tropical species are summarised 
in Table 1, where the frequencies for graphical 
presentations were transformed into relative 
dispersions to configure a harmonious view of 
different datasets.

Fitting the Péllico-Behling distribution
The Péllico-Behling distribution was fitted to different 
datasets, first using different softwares, such as SAS, 
MATLAB, Statistics, SPSS, R, and Table Curve, but the 
results for the coefficients were not the same in each 
one of them as expected. We noted that this divergence 
is due to a laerge number of possible combinations 
of the five parameters that can reach goodness of fit 
for the proposed distribution. We searched for an 
alternative solution for this problem and discovered a 
function proposed by mathematician Dr. Abel Soares 
Siqueira, who used an optimisation procedure, and 
the resulting function was denominated OPTMBEL 
and is elucidated in (40), using the Julia language 
(Julia language 2025, Bezanson et al. 2025). The 
following packages were used: CSV, DataFrames, 
Plots, ADNLPModels, ForwardDiff, NLPModels, 
JSOSolvers, LinearAlgebra, Logging, Printf, Percival, 
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Cariniana legalis Acacia mearnsii Eucalyptus saligna Mortality
Heights (1) DBH (2) Heights (3) Tropical species (124)

(m) (cm) (m) (n)

Classes Freq. Classes Freq.* Classes Freq.* Classes Freq.*

Abs. Rel. Abs. Rel. Abs. Rel. Abs. Rel.
2.5 0.045 4 4 0.050 29 3 0.045 1 14 0.062 323
7.5 0.136 78 6 0.150 55 5 0.136 5 22 0.188 112

12.5 0.227 141 8 0.250 178 7 0.227 7 30 0.312 55
17.5 0.318 98 10 0.350 146 9 0.318 13 38 0.438 28
22.5 0.409 70 12 0.450 292 11 0.409 22 46 0.562 6
27.5 0.500 48 14 0.550 335 13 0.500 62 54 0.688 1
32.5 0.591 29 16 0.650 230 15 0.591 122 62 0.812 6
37.5 0.682 12 18 0.750 116 17 0.682 168 70 0.938 1
42.5 0.773 6 20 0.850 51 19 0.773 37

47.5 0.863 4 22 0.950 14 21 0.863 3

52.5 0.954 3 23 0.954 0

Total 493 1446 440 532

Abs: absolute values. Rel: relative values. Freq: Frequency.

Table 1. Datasets used to fit the Pellico-Behling Probability Distribution.
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and NLPModelsIpopt to develop the function. In the 
OPTMBEL function, xdata represents the frequency 
classes and ydata represents the frequency of 
the classes. The outputs of the function are the 
values of the five coefficients of the Péllico-Behling 
distribution. The primary objective of the function 
is to minimise the sum of squared residuals between 
the observed frequency values and those estimated 
by the probability density function (pdf). This 
process involves optimising the pdf to ensure that the 
estimated frequencies closely match the observed 
data, thereby enhancing the accuracy and reliability 
of the model. 

The details of the OPTMBEL function are provided 
in Appendix 1. The OPTMBEL function fits a nonlinear 
mathematical model defined by the following 
expression: 

to the observed data, xdata and ydata. Using 
constrained optimisation with the Ipopt solver via 
the ADNLPModels package, the function minimises 
the sum of squared residuals between the model 
and the data, along with a regularisation term to 
prevent overfitting. The model is subject to three 
nonlinear parameter constraints to ensure the 
desired mathematical properties, as described above. 
Upon completion of the fitting process, the function 
prints the estimated parameters, the optimisation 
status, and the residual of the objective function. It 
also generates output files in both text and LaTeX 
formats, containing the initial parameters, optimal 
parameters, evaluated constraints, and process status, 
thus supporting documentation and reproducibility 
of the results

Considering the complexity of the statistical 
estimators of the distribution, a function called ESPN 
was developed to obtain them using the Julia language. 
In this function, a, b, c, d, and e are the distribution 
parameters. The output results were the mean, mode, 
variance, standard deviation, skewness, kurtosis, and 
inflection points.

The details of the ESPN function are provided in 
Appendix 2. This function computes and displays 
various statistical measures and characteristics of 
the distribution parameterised by a, b, c, d, and e 
(corresponding to p1, p2, p3, p4, and p5 obtained 
from the OPTMBEL function) of the Péllico-Behling 
distribution. Specifically, the function calculates 
the mean, variance, standard deviation, and mode 
of the distribution using expressions involving the 
gamma function (Γ), and determines the inflection 
points of the density curve. Additionally, it computes 
measures of skewness and kurtosis, providing a 
detailed description of the distribution’s shape. 
These calculations are carried out analytically based 

on nonlinear relationships among the parameters, 
enabling a comprehensive analysis of the statistical 
properties of the defined distribution. The results are 
printed to the console to facilitate user interpretation.

Goodness of fit
The goodness of fit of the fitted distributions was 
evaluated by the application of the Kolmogorov-
Smirnov test (Kolmogorov 1933; Smirnov 1948) at a 
95% probability.

Distributions additionally selected to fit the 
datasets to be compared to the Péllico-Behling 
distribution.

Beta distribution
From Euler’s work, his mathematical functions 
became statistical matrices for the development of 
probabilistic distributions, from which a family of 
continuous ones defined in the interval (0-1) emerged, 
composed of two positive parameters, denoted by 
α and β, which appear as exponents of the random 
variable X and control the shape of the distribution.
The Beta distribution has been applied to model the 
behaviour of variables, limited to finite-size intervals, 
in a great diversity of populations.

However, in biological and forestry applications, 
the interval for variable X lies between two finite 
values a and b, which implies that this distribution, as 
the mother of the Pellico-Behling distribution, will be 
fitted to all datasets in the form already mentioned in 
(10), to be compared with the proposed distribution 
by the authors and verify their real potentiality and 
robustness. The fitting of the beta distribution was 
performed using SAS (on demand for academics) and 
the Julia language.

Burr’s distribution
The Burr distribution is a continuous probability 
distribution for a non-negative random variable, and 
is one of several different distributions, sometimes 
called the “generalized log-logistic distribution,” 
which is most used to model household income but 
can also be applied to fit ecological and production 
variables in native and planted forests. 
This distribution as presented in (Equation 12) will be 
fitted to all databases to establish a comparison with 
the Péllico-Behling distribution. Burr’s distribution 
was fitted using SAS (on demand for academics) and 
the Julia language.
As previously mentioned, we applied Burr’s 
distributions to compare their fitting with the Péllico-
Behling distribution. In the case of the exponential 
type of distribution, we evaluated the application of 
the Pareto Type II (Lomax) distribution when the 
parameter c=1, but the results were not satisfactory 
as the estimated frequencies in the upper diameter 
classes diverged significantly from the observed 
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frequencies, even though the KS test attests no 
significance. Therefore, we decided to fit the original 
Pareto distribution (Pareto 1897) to this dataset, and 
the results were deemed appropriate.

Silva’s distribution
The function proposed by Eduardo Quadros da Silva, 
Silva et al. (2003) was chosen to be fitted to the height 
database of the species Eucalyptus saligna because 
of its special condition of strong asymmetry and 
kurtosis, which made it attractive for the flexibility 
resulting from the polynomial of nth degree in the 
second segment inside the limits l1 ≤ x ≤ l2, as presented 
in (Equation 69).

                                                                                               (69)

where n, d, and h are positive integers; a1, a2, a3, ... am 
are the coefficients of the polynomial; c1 and c2 are 
coefficients of the complementary functions of Silva’s 
truncated distribution; x is the selected variable; k is 
the value of the integral:               

l1 is the upper limit of the class in which the function 
c1xd  is fitted; and l2 is the upper bound of the data 
class for the polynomial fit.

This polynomial distribution is composed of 
three mathematical functions, as presented in 
(Equation 69), in which the first part consists of a 
positive increasing potential function, the second is 
a polynomial adjusted by the least squares method, 
and the third is a hyperbolic descending function, 
which has a straight-line y = 0 as an asymptote. The 
three segments must meet the requirements of a 
probability density function; that is, they must be 
continuous, with non-negative functional values and 
convergent in (0 + ∞). Silva et al. (2003) emphasised  
that five steps are required to fit these functions.

Recently, an adaptation of the Silva’s function 
was conducted, with refitting of the polynomial 
with the help of the Julia language. This adaptation 
was conducted aiming at a better refitting of the 
complementary functions to achieve smoothness 
on the resultant truncated function composed with 
the polynomial curve. The coefficient value  in the 
function g1(x) = c1xd was optimised to approximate 
the estimated values to the observed ones. The values 
of h in the function g3(x) = c2/xh were also optimised. 

The cut points on the polynomial curve:

g2(x) = xn + a2 xn-1 + a3 xn-2 +...+ am

were chosen to smooth the junction of these with 
g1(x), and to approximate the estimated values to 
the real ones, with less squared error; therefore, 
the degrees of the polynomials ranged from the 
2nd to 5th degree. The polynomial coefficients were 
obtained through simple linear regression, which 
made the estimates more accurate. After completing 
the fittings, with adaptation of Silva’s probability 
function, this distribution improved in describing the 
height behaviour of the species Eucalyptus saligna. 
The fitting of de Silva’s distribution was performed 
using the Julia language.

Fitting the Pellico-Behling distribution by cross 
validation
To evaluate the generalisation capacity of the 
Pellico-Behling distribution, fittings were performed 
using cross-validation. The DBH database for the 
black wattle species (Plantation 1) was used for 
this purpose. In this case, a sample dataset was 
considered, consisting of 674 values corresponding to 
data from a single stand. Two hundred fittings were 
conducted, with each fitting using 80% of the values 
to fit the distribution and the remaining 20% to 
evaluate the goodness of fit of the fitted distribution 
using the KS test at a 95% probability. The selection 
of values for fittings and goodness of fit evaluation 
was done randomly for each replication. The relative 
classes presented in Table 1 were created to obtain 
the frequency for fitting the data and testing their 
goodness of fit. The 200 replications allowed us 
to evaluate the behaviour of the Pellico-Behling 
distribution coefficients through their frequency, 
as well as the probability and cumulative density 
functions, in addition to the performance of the 
goodness of fit test.

The fittings via cross-validation were performed 
using the OPTMBELR function, developed in the Julia 
language. Details of the OPTMBELR function are 
provided in Appendix 3. This function was designed to 
validate the robustness and stability of the proposed 
model fitting through a repeated cross-validation 
(resampling) procedure applied to diameter data of 
Acacia mearnsii. Based on the original dataset, the 
function performs R repetitions of a random partition 
into two subsets: one for model fitting (80%) and 
another for testing (20%). In each repetition, the 
data are normalised and organised into 12 frequency 
classes using fixed interval limits. Model fitting is 
carried out using constrained nonlinear optimisation 
via the Ipopt solver, following the mathematical 
formulation implemented in the OPTMBEL function, 
which minimises the sum of squared residuals with 
an added regularisation term.

( )1 2 2
1 1 2 3

0

...d n n n
m xh

cx c a x a x a x a d k
x

∞
− − + + + + + + =  ∫



In each iteration, the estimated parameters were 
stored, fitted curves were generated, and the observed 
and estimated cumulative frequencies were compared 
using the Kolmogorov-Smirnov (KS) test. The test 
statistic was calculated and compared to the critical 
value to evaluate the goodness-of-fit. At the end of 
the process, the function returned the proportion 
of iterations in which the calculated KS statistic was 
lower than the critical value, indicating the percentage 
of statistically acceptable fits. Additionally, various 
graphical outputs were saved, including histograms 
of the estimated parameters, fitted frequency and 
cumulative curves, and the distribution of KS values, 
providing a comprehensive overview of model quality 
and parameter stability.

The OPTMBELR function required four input 
arguments: 

(i) a DataFrame X containing at least one column 
named DAP, with the diameter values to be 
analysed; 

(ii) an integer R, indicating the number of cross-
validation repetitions; 

(iii) a vector p0 containing five initial values for the 
model parameters; and 

(iv) a string out, specifying the path to the directory 
where the graphical output files will be saved. The 
function is included as an annex to this document 
to ensure reproducibility and to support future 
applications.

The OPTMBEL and OPTMBELR functions required the 
following packages for their implementation: CSV is 
the package for importing, creating, and manipulating 
files in CSV format,  DataFrames is the package for 
creating and manipulating data tables, Plots is the 
package for generating graphics, ADNLPModels is the 
package that provides implementation of automatic 
differentiation-based models and ForwardDiff is 
the package that implements methods to obtain 
derivatives, gradients, Jacobians, Hessians, and 
higher-order derivatives of native Julia functions using 
automatic differentiation in direct mode, NLPModels 
is the package that provides general guidelines for 
representing nonlinear programming problems in 
Julia and a standardised API for evaluating functions 
and their derivatives, JSOSolvers is the package  that 
provides optimisation solvers for unconstrained 
optimisation, LinearAlgebra is the package for 
computing matrices,  Logging is the package that 
provides basic features for logging output in Julia, 
Printf is the Package that provides basic features for 
formatted printing in Julia, Percival is the package 
that provides implementation of the augmented 
Lagrangian solver and NLPModelsIpopt is the package 
that provides a thin IPOPT wrapper for NLPModels.

To compare the Péllico-Behling, Burr, and Beta 
distributions, one iteration was randomly selected 
from the 200 data partitions to evaluate the 
Kolmogorov-Smirnov (KS) test on both the fitting 
(80%) and testing (20%) datasets. The fitting dataset 
was used to fit the three distributions, and the resulting 
models were then evaluated on the testing dataset 
using the KS goodness-of-fit test. During the fitting 
process, the diameter variable was standardised to 
the [0, 1] range, as previously described.

Evaluation of the Péllico-Behling distribution on 
independent datasets
A new sample consisting of 271 diameter at breast 
height (DBH) measurements of Acacia mearnsii (black 
wattle) was collected in May 2025 from three circular 
plots of 400 m² each, randomly installed in a 7.3-year-
old stand located in the municipality of Piratini, in 
the state of Rio Grande do Sul, Brazil. It is important 
to note that this dataset was not used in the initial 
fitting of the distributions described in Table 1 and 
was reserved exclusively for the external validation 
of the fitted probability functions. The aim of this 
approach was to evaluate the predictive performance 
of the Péllico-Behling distribution when applied 
to independent data obtained under conditions 
similar to those used for model fitting. The fitted 
distributions were assessed on the testing dataset 
using the Kolmogorov-Smirnov (KS) goodness-of-fit 
test. During the fitting process, the diameter variable 
was standardised to the [0, 1] range, as previously 
described.

Results
The Pellico-Behling Probability Distribution (5P) was 
applied to fit the datasets for Cariniana legalis (Figure 
1), Acacia mearnsii (Figure 2), and Eucalyptus saligna 
(Figure 3), as presented in Equation 25. The average 
mortality of 124 species was obtained using case 2, 
that is, with (4P). The fitting of the distribution to the 
data of average mortality of 124 species using case 2 
with four parameters (Equation 59), is presented in 
(Figure 4). In all these cases the cumulative function 
was calculated using the additive rectangular areas 
of small classes of 1/1,000 size, approximative to 
the area obtained by the integration of function 
(Equation 28). The results of the estimates for the 
populations are presented in Table 2. The results of 
the fitted distributions, including their statistics and 
the goodness-of-fit evaluation are presented in Table 
3. The results of the estimates for the populations 
obtained by Burr distribution are summarised in 
Table 4 and Figure 5. The results of the estimates 
for the populations using the Beta distribution are 
summarised in Table 5 and Figure 6. The results of 
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Figure 1. Péllico-Behling Probability Distribution fitted to heights of the species Cariniana legalis.

Figure 2. Péllico-Behling Probability Distribution fitted to DBH of Acacia mearnsii. 

Figure 3. Péllico-Behling Probability Distribution fitted to heights of the species Eucalyptus saligna.

Figure 4. Péllico-Behling Probability Distribution fitted to the average mortality of 124 tropical species, evaluated 
from 1996 to 2001, in a fragment of the semideciduous seasonal forest in Cassia, MG, Brazil.



the estimates for the populations using the Silva’s 
distribution are summarised in Table 6 and Figure 7. 

Results of fitting the Pellico-Behling distribution 
by cross validation
The fittings, considering cross-validation for 200 
replications are presented in Figure 8, applied to 
the distribution of diameters of Acacia mearnsii De 
Wild (n = 674). The fitted functions proved suitable 

to highlight the distinct variabilities of the observed 
distributions, showing robustness in representing the 
data, as well as stability across the 200 simulations 
performed.

The proportion of times where the calculated 
Kolmogorov-Smirnov (KS) test value was equal to 
or less than the tabulated KS value reached 97.50% 
across 200 replications of the fittings, as illustrated 
in Figure 9, showing the goodness of fit  of the tested 
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Table 2. Summary of the results for fitting the Péllico-Behling distribution to different sets of data.

Application cases Relativised (x) f(x) F(x)
k = 1000 classes

Cariniana legalis

Acacia mearnsii

Eucalyptus saligna
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Table 3. The Péllico-Behling distribution statistics.
Statistics Acacia mearnsii Eucalyptus saligna Cariniana legalis Mortality

DBH Heights Heights 124 trop. spp.
Mean 0.4939 0.6047 0.318 0.1942
Variance 0.0269 0.0089 0.033 0.0517
Standard 
deviation 0.1642 0.0946 0.1827 0.2275

Mode 0.5349 0.6528 0.2144 0
Inflexion points [0.3644, 0.6844] [0.5808, 0.7230] [0.1111, 0.3174] ---
Asymmetry -0.1395 -0.8585 2.2373 2.9471
Kurtosis -0.2521 0.803 12.0516 12.44
KS 0.0317ns 0.0387ns 0.0161ns 0.0120ns

Tab. (5%) 0.0366 0.0648 0.0613 0.0590
ns: not significant.
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Table 4. Summary of the results for fitting the Burr distribution to Cariniana legalis, Acacia mearnsii, Eucalyptus 
saligna, and Pareto distribution for mortality of 124 tropical species.

Application cases f(x) KS test

Cariniana legalis 0.0318ns

Acacia mearnsii 0.0323ns

Eucalyptus saligna 0.0387ns

Mortality 0.0369ns

KS – Kolmogorov-Smirnov test

Figure 5. Burr Probability Distribution fitted to heights of the species Cariniana legalis, diameter of Acacia mearnsii, 
heights of the species Eucalyptus saligna, and average mortality of 124 tropical species from a fragment of the 
semideciduous seasonal forest.
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Table 5. Summary of the results for fitting the beta distribution to different sets of data.

Figure 6. Beta Probability Distribution fitted to heights of the species Cariniana legalis, diameter of Acacia mearnsii, 
heights of the species Eucalyptus saligna, and average mortality of 124 tropical species in a fragment of the 
semideciduous seasonal forest.

Application cases f(x) KS

Cariniana legalis 0.1021ns

Acacia mearnsii 0.1348*

Eucalyptus saligna 0.0727*

 Mortality 0.4572*



distribution. This high percentage of fit highlights 
the consistency and reliability of the distribution to 
assess the characteristics of the variable used.

Approximately, the values of coefficient a ranged 
from 0.7 to 1.3, while coefficient b ranged from 
slightly above 1 to 1.3. Coefficient c ranged between 
2 and 7, coefficient d between 3 and 5, and coefficient 
e between 2 and 6, Figure 10. No outlier values 
were observed for the coefficients across the 200 
simulations effectuated, indicating that they are 
stable and reliable to be used.

The fitting through the optimisation of the proposed 
pdf, which minimises the sum of squared residuals 
between the observed and estimated frequencies, 
proved to be an excellent fitting method. The 
optimisation procedure showed its effectiveness in 
assessing the characteristics of the data distribution, 
ensuring that the adjusted coefficients fell within an 

acceptable range of values. By minimising residuals, 
the method provided a close approximation between 
observed and estimated frequencies, highlighting its 
reliability and applicability for fitting the proposed 
pdf, with consistent and accurate results, reinforcing 
the overall robustness of the statistical analysis. 
Consequently, the performance of the procedures 
using the OPTMBEL and OPTMBELR functions enables 
to assert that the obtained results were reliable and 
statistically robust. 

The fitting results of the Péllico-Behling 
distribution, applied to 80% of the Acacia mearnsii 
De Wild DBH data and tested on the remaining 20%, 
representing one instance among the 200 cross-
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Table 6. Summary of the results for fitting the Silva’s distribution to heights of the species Eucalyptus saligna.
Component f(x) KS

1

0.012ns2

3

Figure 7. Silva’s Probability Distribution fitted to 
heights of the species Eucalyptus saligna.

Figure 8. Fitting of the Péllico-Behling Probability 
Distributions [f(x), F(x)] through cross-validation, 
repeated 200 times, for the database DBH of Acacia 
mearnsii.

Figure 9. KS tests applied to fittings with the Péllico-
Behling Probability Distribution using the database 
for goodness of fit assessment, repeated 200 times, to 
DBH of Acacia mearnsii.
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validation repetitions, are presented in Figure 11 and 
Table 7. The corresponding results for the Beta and 
Burr distributions are shown in Figure 12 and also 
summarised in Table 7.

Evaluation of the Péllico-Behling Distribution 
Using Independent Datasets
The fitted Péllico-Behling (Table 2), Burr (Table 4), 
and Beta (Table 5) distributions were evaluated for 
their ability to predict the diameter at breast height 
(DBH) distribution in a new Acacia mearnsii stand 
dataset that was not used during the model fitting 
stage. The results showed that the Péllico-Behling 
distribution demonstrated greater flexibility in 
capturing the observed diameter structure, being 
the only one among those tested that did not show 
statistical significance in the Kolmogorov-Smirnov 
(KS) test—indicating a satisfactory fit to the observed 

data (Figure 13). This underscores both the potential 
of the Péllico-Behling distribution for modeling 
DBH distributions in Acacia mearnsii stands and the 
flexibility of the function.

Discussion
Probability distributions are very important models 
to describe the behaviour of biotic variables in forest 
ecosystems, as well as their evolution in a time horizon 
that represents a climax life cycle. The modeling 
of biological and ecological phenomena through 
probabilistic distributions makes it possible to treat 
them quantitatively and evaluate them statistically. 
The use of distributions for such circumstances has 
been widely used by renowned researchers dealing 
with biological, forestry and ecological experiments, 
such as, Bailey (1980), Bailey & Dell (1973), Bowling 

Figure 10. Frequency of the Péllico-Behling Probability 
Distribution coefficients, through cross validation, 
repeated 200 times, to DBH of Acacia mearnsii. 



et al. (1989), Borders et al. (1990), Xu et al. (1992), 
Cao (1997), Fonseca et al. (2009), Nanosa et al. 
(2000), Zhang et al. (2001), Liu et al. (2002), Zhang 
et al. (2003), Ivkovi & Rozenberg (2004), Liu et al. 
(2004), Qin et al. (2007), Breidenbach et al. (2008), 
Machado et al. (2008), Binotti et al. (2012), Sandoval 
et al. (2012), Rupšys & Petrauskas (2017), Miranda et 
al. (2018), Chen et al. (20019), Schmidt et al. (2019), 
Duchateau et al. (2020), Piva et al. (2020), Schmidt et 
al. (2020), Ciceu et al. (2021), Cao (2022), Guo et al. 
(2022), Goodwin (2022), Waldy et al. (2022).

In the last 30 years, we have encountered numerous 
datasets whose fitted distributions presented 
asymmetry, accentuated kurtosis, and other 
peculiarities that have led to non-goodness-of-fit when 
using the most applied probability distributions to 
forest data, such as Gamma, Beta, Weibull, and Burr’s 
system. Our group, formed by forest researchers and 
two mathematicians interested in collaborating in 
the search for alternatives to improve such fittings, 
initially proposed the application of a polynomial of 
degree n as a mathematical model for improving the 
goodness-of-fit condition of a probability distribution.

A polynomial distribution of degree n was 
developed, which satisfied the previously appointed 
constraints very well. This polynomial distribution 

consists of three mathematical functions and is a 
“truncated pdf,” which shows great flexibility when 
fit to forest data (Silva et al. 2003). In this model, the 
first part consists of a positive potential increasing 
function, the second part is a polynomial fit using the 
least-squares method, and the third is a hyperbolic 
function with y = 0 as an asymptote. The three 
functions must meet the assumptions of a pdf, that 
is, they must be continuous with non-negative and 
convergent values in the interval (0 + ∞).

As mentioned in Section 4 of the manuscript, 
when a probability distribution has more than three 
parameters, the possibility of combinatorial solutions 
grows exponentially; that is, their estimates obtained 
with different software programs did not generate 
appropriate values for variance, skewness, kurtosis, 
and inflection points in many fitted cases. Only after 
the development of an optimisation function by 
the mathematician Dr. Abel Soares Siqueira, called 
OPTIMBEL, this was possible to obtain a single 
realistic solution for the five parameters of the new 
proposed distribution. 

Additionally, the scale transformation of the 
variable X in the interval between zero and one 
allowed us to obtain consistent parameters for all 
sampled datasets to which the proposed distribution 
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Figure 11. Péllico-Behling distribution fitted to 80% of the DBH data from Acacia mearnsii and tested on the 
remaining 20%, representing one instance from the 200 repetitions used in the cross-validation.
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Figure 12. Beta and Burr distributions fitted to 80% of the DBH data from Acacia mearnsii and tested on the 
remaining 20%, representing one instance from the 200 repetitions used in the cross-validation.

Table 7. Summary of the results from fitting the Péllico-Behling, Beta and Burr distributions to 80% of the DBH 
data (n = 674) from Acacia mearnsii, and testing on the remaining 20%. This represents a single instance from the 
200 repetitions used in the cross-validation.

Distribution f(x) KS -  
fitting dataset 

(80%)

KS -  
testing dataset 

(20%)

Péllico-Behling 0.0322ns 0.0595ns

Beta 0.0832* 0.1027ns

Burr 0.0965* 0.0804ns



was fitted. Evaluating the calculations of the 
statistical estimates obtained from these fittings 
allowed us to suggest new inclusion of restrictions 
for the adjustments of the distribution, as presented 
in the methodology. It is important to highlight that 
the transformed scales open the possibility of using 
the estimated parameters as seeds for fitting new 
datasets. 	

The Péllico-Behling distribution after fitting to 
the sampled datasets was compared with the fitted 
Beta and Burr (4P) distributions, except for Silva’s 
polynomial distribution that was fitted to the heights 
of the species Eucalyptus saligna and the Pareto 
distribution to mortality of 124 tropical species 
from a fragment of a semideciduous seasonal forest, 
to evaluate and verify its potential and robustness. 
The first dataset is the height of Cariniana legalis 
collected in a mixed tropical forest fragment in Cassia, 
MG, Brazil; the second dataset is the DBH of Acacia 
mearnsii collected in the plantation areas of Cristal 
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and Piratini in the state of Rio Grande do Sul, Brazil; 
the third dataset is the heights of Eucalyptus saligna 
from an experiment implemented in the Ibiti Forest 
Park owned by the company Ripasa S.A. Celulose and 
Paper, located in the municipality of Itarare, SP; and 
the fourth dataset is the mortality of tropical species 
(124) collected in a mixed tropical forest fragment 
in Cassia, MG, Brazil. The proposed distribution 
revealed reliable goodness-of-fit in the fitted cases. 
The goodness of fit evaluated with the KS test in the 
other distributions revealed in almost all cases to 
be non-significant, but not better than the results 
obtained for the proposed distribution, except for the 
fitting of Silva’s distribution applied to the Eucalyptus 
saligna dataset, because its pdf, as mentioned before, 
is a truncated distribution with exceptional flexibility 
due to the inclusion of a fourth-degree polynomial 
segment in that model, capable of assimilating the 
extreme cases of skewness.

Figure 13. Fitted Péllico-Behling, Beta and Burr distributions tested on a new dataset from a 7.3-year-old Acacia 
mearnsii stand.
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Through the cross-validation process applied to 
the DBH data of Acacia mearnsii, it was observed 
that the optimisation of the proposed PDF proved 
to be an effective and highly accurate fitting method. 
By ensuring that the adjusted coefficients remained 
within an acceptable range, the procedure effectively 
captured the characteristics of the data distribution. 
This approach resulted in a close alignment between 
observed and estimated frequencies, highlighting 
the capability and robustness of the statistical 
analysis. Consequently, the use of the OPTMBEL and 
OPTMBELR functions confirmed the reliability and 
statistical robustness of the obtained results.

The results from one of the 200 cross-validation 
iterations highlighted the stability of the fitting 
performance of the Péllico-Behling distribution. The 
KS test results were not significant for either the 
fitting or testing datasets, indicating a good fit to the 
data. In contrast, for the Burr and Beta distributions, 
the KS test was non-significant only for the testing 
dataset. This indicates that while the Péllico-Behling 
distribution provided a consistent fit across both 
datasets, it also demonstrated superior performance 
in the goodness-of-fit assessment. These findings 
were further supported when the previously fitted 
distributions (shown in Tables 2, 3, and 4) were 
applied to an independent dataset collected from a 
7.3-year-old Acacia mearnsii stand not included in the 
original model fitting. Once again, the Péllico-Behling 
distribution was the only one that the Kolmogorov-
Smirnov test was not significant, reinforcing its 
robustness, flexibility, and predictive capability for 
modeling diameter distributions in independent 
stands of this species.

The proven flexibility of the proposed distribution 
in different cases of asymmetries and kurtosis in 
forest datasets opens the possibility of using it for 
monitoring one variable or a set of variables in long-
term experiments to assimilate their variations in 
shape over time in the same forest population.

Conclusions
In this research, a new model called the Péllico-
Behling distribution was developed with five 
parameters, capable of attaining maximum flexibility 
of the resulting function. 

The probability density function was generated 
without using the derivative method, but instead a new 
procedure called the aggregative method to avoid the 
occurrence of parental parameters in the numerator 
of the ratio that makes up the resulting function. 

After fitting this new distribution with various 
software to different datasets, the results were not 
equal, and this divergence is due to an enormous 
number of possible combinations of the five 
parameters. Even though goodness of fit was obtained 
in all adjustments, the statistical estimates were 

not correct in most cases, requiring an alternative 
solution for this problem. 

An optimisation function, OPTMBEL, was 
developed to provide an appropriate solution for the 
parameters and correct the statistical estimates of the 
distribution.

The scale transformation of variable X in the 
interval between zero and one was favored to obtain 
consistent parameters for all sampled datasets, to 
which the proposed distribution was fitted. 

The new distribution is quite flexible and presents 
better reliability when compared with beta, Burr 
(3P), Silva, and Pareto distributions. The plots of the 
pdf and cdf clearly show the flexibility of the proposed 
distribution. 

The proposed distribution fitted well to symmetric 
and asymmetric data in unimodal cases and to 
exponential occurrences of the variable X, which 
qualifies it to model and monitor its behaviour in 
different realities occurring in biopopulations.
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Appendicies

Appendix 1: OPTMBEL function

using CSV, DataFrames, Plots, ADNLPModels, 
ForwardDiff, NLPModels, JSOSolvers, LinearAlgebra, 
Logging, Printf,Percival, NLPModelsIpopt
gr()

function OPTMBEL(xdata,ydata)
    lvar = [1e-16; zeros(4)]
    model = (x,p) -> x^p[1] / ((p[2] + p[3] * 
x^p[4])^p[5])
    erro(x, y, p) = model(x, p) - y
  
    λ = 1e-6
    f(p) = sum(erro(xi, yi, p)^2 for (xi, yi) in zip(xdata, 
ydata)) + λ * norm(p)^2
    c(p) = [
      p[5] - 2p[1];
      p[5] * p[4] - p[1] - p[4] - 2;
      p[5] * p[4] - 2p[4] + 1;
    ]
    lcon = zeros(3)
    ucon = fill(Inf, 3)
    nlp = ADNLPModel(f, p0, lvar, fill(Inf, 5), c, lcon, ucon)
    # nlp = ADNLPModel(f, p0, zeros(5), fill(Inf, 5))
    local output
    try
      output = ipopt(nlp)
      # output = percival(nlp, max_eval=10000, subsolver_
logger=ConsoleLogger())
      # output = with_logger(NullLogger()) do
        # tron(nlp, variant=:Newton, max_eval=10000)
        # percival(nlp, max_eval=10000)
      # end
    catch ex
      println(“Falhou para $filename: $ex”)
      return
    end
    p = output.solution
    residuo = round(norm(model.(xdata, Ref(p)) - ydata), 
digits=4)
  
    println(“p = $p”)
    println(“status = “, output.status)
    println(“residuo = “, residuo)
  
    open(“sylvio/saida.txt”, “w”) do io
      println(io, “original = [“)
      for i = 1:length(output.solution)
        println(io, p0[i])
      end
      println(io, “]”)
      println(io, “solution = [“)
      for i = 1:length(output.solution)
        println(io, output.solution[i])
      end
      println(io, “]”)
      println(io, “restrição: [“)

      cp = c(output.solution)
      for i = 1:3
        println(io, cp[i])
      end
      println(io, “]”)
      println(io, “status = “, output.status)
    end
  
    open(“sylvio/saida.tex”, “w”) do io
      println(io, raw”\begin{center}”)
      println(io, raw”\begin{tabular}{r|r}”)
      println(io, “inicial & otima \\\\ \\hline”)
      r = round.(p, sigdigits=6)
      for i = 1:5
        println(io, “$(p0[i]) & $(r[i]) \\\\”)
      end
      println(io, raw”\end{tabular}”)
      println(io, raw”\end{center}”)
    end
  

end

#Function OPTMBEL(xdata,ydata)
OPTMBEL(X, Y)



Appendix 2: ESPN function
using SpecialFunctions

function ESPN(a,b,c,d,e)
    Média=((gamma(e-((a+2)/d)))*(gamma((a+2)/d)))/
(((c/b)^(1/d))*(gamma(e-((a+1)/
d)))*gamma((a+1)/d))
    Var=(((gamma(e-((a+3)/d)))*(gamma((a+3)/d)))/
(((c/b)^(2/d))*(gamma(e-((a+1)/d)))*(gamma((a+1)/
d))))-(Média^2)
    dp=sqrt(Var)
    Moda=((a*b)/(c*(e*d-a)))^(1/d)
    #Pontos de inflexão
    ZiU=(-b*c*((2*a)*(a-1)+d*e*(1-d-
2*a))+(((b^2)*(c^2)*((2*a*(a-d*e-
1)+d*e*(1-d))^2)-4*(b^2)*(c^2)*((a*(a-
1))+d*e*(d*e+1-2*a))*a*(a-1))^0.5))/
(2*(c^2)*(a*(a-1)+d*e*(d*e+1-2*a)))
    ZiL=(-b*c*((2*a)*(a-1)+d*e*(1-d-
2*a))-(((b^2)*(c^2)*((2*a*(a-d*e-
1)+d*e*(1-d))^2)-4*(b^2)*(c^2)*((a*(a-
1))+d*e*(d*e+1-2*a))*a*(a-1))^0.5))/
(2*(c^2)*(a*(a-1)+d*e*(d*e+1-2*a)))
    xiU=ZiU^(1/d)
    xiL=ZiL^(1/d)
    #Assimetria (S)
    EX3=((gamma(e-((a+4)/d)))*(gamma((a+4)/d)))/
(((c/b)^(3/d))*(gamma(e-((a+1)/
d)))*gamma((a+1)/d))
    m3=EX3-3*(Média*(Var+Média^2))+2*(Média^3)
    S=m3/(dp^3)
    #Curtose 
    EX4=((gamma(e-((a+5)/d)))*(gamma((a+5)/d)))/
(((c/b)^(4/d))*(gamma(e-((a+1)/
d)))*gamma((a+1)/d))
    m4=EX4-4*(Média*(m3+3*(Média*(Var+Média^2))-
2*Média^3))+6*(Média^2*(Var+Média^2))-3*Média^4
    Curtose=(m4/(dp^4))-3
    println(“Média: “, Média)
    println(“Variância: “, Var)
    println(“Despio-padrão: “, dp)
    println(“Moda: “, Moda)
    println(“Pontos de infelxão: “, [xiL,xiU])
    println(“Assimetria: “, S)
    println(“Curtose: “, Curtose)
end

ESPN(a,b,c,d,e)
 

Appendix 3: OPTMBELR function

using CSV, DataFrames, Plots, ADNLPModels, 
ForwardDiff, NLPModels, JSOSolvers, 
LinearAlgebra,Logging, Printf,Percival, 
NLPModelsIpopt, StatsBase

  #Dados de biomassa total e dap de acácia negra
  X=CSV.read(“acacian.csv”, DataFrame)

  function OPTMBEL(xdata,ydata,p0)
    lvar = [1e-16; zeros(4)]
    model = (x,p) -> x^p[1] / ((p[2] + p[3] * 
x^p[4])^p[5])
    erro(x, y, p) = model(x, p) - y
  
    λ = 1e-6
    f(p) = sum(erro(xi, yi, p)^2 for (xi, yi) in zip(xdata, 
ydata)) + λ * norm(p)^2
    c(p) = [
      p[5] - 2p[1];
      p[5] * p[4] - p[1] - p[4] - 2;
      p[5] * p[4] - 2p[4] + 1;
    ]
    lcon = zeros(3)
    ucon = fill(Inf, 3)
    nlp = ADNLPModel(f, p0, lvar, fill(Inf, 5), c, lcon, ucon)
    
    #nlp = ADNLPModel(f, p0, zeros(5), fill(Inf, 5))
    local output
    try
      output = ipopt(nlp)
      # output = percival(nlp, max_eval=10000, subsolver_
logger=ConsoleLogger())
      # output = with_logger(NullLogger()) do
        # tron(nlp, variant=:Newton, max_eval=10000)
        # percival(nlp, max_eval=10000)
      # end
    catch ex
      println(“Falhou para $filename: $ex”)
      return
    end
    return output.solution
  end

  # Função de validação
  function OPTMBELR(X::DataFrame, R::Int64, 
p0::Vector{Float64}, out::String)
    if length(p0) !== 5
      error(“Erro: O tamanho do vetor não pode ser 
diferent de 5.”)
    end
    plot()
    Tabela1 = DataFrame()
    Tabela2 = DataFrame()
    Tabela3 = DataFrame()
    Tabela4 = DataFrame()
    resultado_grap = Matrix{Float64}(undef, 1000,R)
    coef = Matrix{Float64}(undef, R, 5)
    KScalc = Vector{Float64}(undef,R)
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    for i in 1:R
      
      Mínimo=minimum(X.DAP)
      Máximo=maximum(X.DAP)
      Z=(X.DAP.-Mínimo)./(Máximo-Mínimo)

      #Limites de classes (    |-  Fechado para a esquerda e 
aberto para a direita)
      x=DataFrame(ZDAP=Z)
      x=x.ZDAP
      n_individuos = size(x,1)
      df = DataFrame(ZDAP=Z)
      
      global sample_1 = sample(1:nrow(df), 
Int64(round((n_individuos*0.80), digits = 0)), 
replace=false)
      df1 = df[sample_1, :]
      test_rows = setdiff(1:nrow(df), sample_1)
      global df_teste = df[test_rows, :]
      println(df_teste)
      x1=df1.ZDAP
      #Limites de classes (    |-  Fechado para a esquerda e 
aberto para a direita)
      x=x1

      Classe_1=x[(0 .<= x .< 0.0833)]
      Classe_2=x[(0.0833 .<= x .< 0.1667)]
      Classe_3=x[(0.1667 .<= x .< 0.2500)]
      Classe_4=x[(0.2500 .<= x .< 0.3333)]
      Classe_5=x[(0.3333 .<= x .< 0.4167)]
      Classe_6=x[(0.4167 .<= x .< 0.5000)]
      Classe_7=x[(0.5000 .<= x .< 0.5833)]
      Classe_8=x[(0.5833 .<= x .< 0.6667)]
      Classe_9=x[(0.6667 .<= x .< 0.7500)]
      Classe_10=x[(0.7500 .<= x .< 0.8333)]
      Classe_11=x[(0.8333 .<= x .< 0.9167)]
      Classe_12=x[(0.9167 .<= x .< 1)]

      #Frequência absoluta 80% dos dados
      f1_Classe1=length(Classe_1)/size(sample_1, 1)
      f1_Classe2=length(Classe_2)/size(sample_1, 1)
      f1_Classe3=length(Classe_3)/size(sample_1, 1)
      f1_Classe4=length(Classe_4)/size(sample_1, 1)
      f1_Classe5=length(Classe_5)/size(sample_1, 1)
      f1_Classe6=length(Classe_6)/size(sample_1, 1)
      f1_Classe7=length(Classe_7)/size(sample_1, 1)
      f1_Classe8=length(Classe_8)/size(sample_1, 1)
      f1_Classe9=length(Classe_9)/size(sample_1, 1)
      f1_Classe10=length(Classe_10)/size(sample_1, 1)
      f1_Classe11=length(Classe_11)/size(sample_1, 1)
      f1_Classe12=length(Classe_12)/size(sample_1, 1)

      x2 = df_teste.ZDAP

      Classe_1=x2[(0 .<= x2 .< 0.0833)]
      Classe_2=x2[(0.0833 .<= x2 .< 0.1667)]
      Classe_3=x2[(0.1667 .<= x2 .< 0.2500)]
      Classe_4=x2[(0.2500 .<= x2 .< 0.3333)]
      Classe_5=x2[(0.3333 .<= x2 .< 0.4167)]
      Classe_6=x2[(0.4167 .<= x2 .< 0.5000)]
      Classe_7=x2[(0.5000 .<= x2 .< 0.5833)]

      Classe_8=x2[(0.5833 .<= x2 .< 0.6667)]
      Classe_9=x2[(0.6667 .<= x2 .< 0.7500)]
      Classe_10=x2[(0.7500 .<= x2 .< 0.8333)]
      Classe_11=x2[(0.8333 .<= x2 .< 0.9167)]
      Classe_12=x2[(0.9167 .<= x2 .< 1)]

      #Frequência absoluta 20% dos dados
      f1_Classe1_30=length(Classe_1)/(nrow(X) - 
size(sample_1, 1))
      f1_Classe2_30=length(Classe_2)/(nrow(X) - 
size(sample_1, 1))
      f1_Classe3_30=length(Classe_3)/(nrow(X) - 
size(sample_1, 1))
      f1_Classe4_30=length(Classe_4)/(nrow(X) - 
size(sample_1, 1))
      f1_Classe5_30=length(Classe_5)/(nrow(X) - 
size(sample_1, 1))
      f1_Classe6_30=length(Classe_6)/(nrow(X) - 
size(sample_1, 1))
      f1_Classe7_30=length(Classe_7)/(nrow(X) - 
size(sample_1, 1))
      f1_Classe8_30=length(Classe_8)/(nrow(X) - 
size(sample_1, 1))
      f1_Classe9_30=length(Classe_9)/(nrow(X) - 
size(sample_1, 1))
      f1_Classe10_30=length(Classe_10)/(nrow(X) - 
size(sample_1, 1))
      f1_Classe11_30=length(Classe_11)/(nrow(X) - 
size(sample_1, 1))
      f1_Classe12_30=length(Classe_12)/(nrow(X) - 
size(sample_1, 1))

      Classe=[1,2,3,4,5,6,7,8,9,10,11,12]
      global Centro_de_Classe=[0.0417, 0.1250, 0.2083, 
0.2917, 0.3750, 0.4583, 0.5417, 0.6250, 0.7083, 0.7917, 
0.8750, 0.9583]

      f1=[f1_Classe1,f1_Classe2,f1_Classe3, f1_Classe4,f1_
Classe5, f1_Classe6,f1_Classe7, f1_Classe8,f1_Classe9,f1_
Classe10,f1_Classe11,f1_Classe12]
      Tabela1=DataFrame(i=Classe, CC=Centro_de_
Classe,fi=f1)

      #Tabela de frequência
      f1=[f1_Classe1_30,f1_Classe2_30,f1_Classe3_30, f1_
Classe4_30,f1_Classe5_30, f1_Classe6_30,f1_Classe7_30,
      f1_Classe8_30,f1_Classe9_30,f1_Classe10_30,f1_
Classe11_30,f1_Classe12_30]
      Tabela2=DataFrame(i=Classe, CC=Centro_de_
Classe,fi=f1)

      #Frequencia Observada
      Tabela3 = cumsum(Tabela2.fi)./sum(Tabela2.fi)

      #Inserir o resultado do ajuste
      p1 = DIST.OPTMBEL(Tabela1.CC, Tabela1.fi, p0)

      coef[i,:] = p1

      f(x) =x^coef[i,1] / ((coef[i,2] + coef[i,3] * 
x^coef[i,4])^coef[i,5])
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      xGrid = range(0, 1, length = 1000)
      XG = range(0, 1, length = 1000)
      YG1=f.(xGrid)

      resultado_grap[:,i] = YG1

      if i === 1
        plot()
        global plt_normal = plot(XG,[resultado_grap[:,1]],   
linewidth = 2,linecolor = :black, legend = false, xlabel = 
“Class center (x)”, ylabel = “f(x)”, xticks = round.(Centro_
de_Classe, digits = 2))
      else
        global plt_normal = plot!(XG,[resultado_grap[:,i]],   
linewidth = 2,linecolor = :black, legend = false)

      end

      if i === R
        for j in 1:R
          if j === 1
            plot()
            global plt_acumulado = plot(XG, 
cumsum((resultado_grap[:,1]./sum(resultado_
grap[:,1])), dims = 1), xlabel = “Class center (x)”, ylabel 
= “F(x)”, xticks = round.(Centro_de_Classe, digits = 2))      
          else
            global plt_acumulado = plot!(XG, 
cumsum((resultado_grap[:,j]./sum(resultado_grap[:,j])), 
dims = 1), legend = false)
          end
        end
      end

      # Frequencia estimada  
      Tabela4 = f.(Centro_de_Classe) #normal

      AcumuladoFest = cumsum(Tabela4)/sum(Tabela4) 
#Acumulada

      #Tabela para calculo KS
      global Tabela5 = DataFrame(CC = Centro_de_Classe, 
FO = Tabela3, FE = AcumuladoFest, Diff = abs.(Tabela3 
.- AcumuladoFest))
      
      #Kscalculado
      global KScalc[i] = maximum(Tabela5.Diff)

      #Ks tabelado
      global Kstab = 1.36/(sqrt((nrow(X) - size(sample_1, 
1))))
      global teste = coef
    end
    menor_kscalc = (length(KScalc[(KScalc .<= 
Kstab)])/R) * 100

    minimum_values = minimum(coef, dims = 1)
    maximum_values = maximum(coef, dims = 1)

    #Eixo X colocar centro de classes

    histogram(KScalc, bins = 10, label = “Calculated 
Value”, xlabel = “Ks-values”, ylabel = “Frequency”)
    savefig(plot!([Kstab, Kstab], [0,30], label = “Critical 
Value”), “$out\\Ks_values”)
    savefig(histogram(coef[:,1], bins = range(minimum_
values[1], maximum_values[1], 10), title = “a”, legend 
= false, xlabel = “Values of the parameter a”, ylabel = 
“Frequency”), “$out\\Results of paramter a”)
    savefig(histogram(coef[:,2], bins = range(minimum_
values[2], maximum_values[2], 10), title = “b”, legend 
= false, xlabel = “Values of the parameter b”, ylabel = 
“Frequency”), “$out\\Results of paramter b”)
    savefig(histogram(coef[:,3], bins = range(minimum_
values[3], maximum_values[3], 10), title = “c”, legend 
= false, xlabel = “Values of the parameter c”, ylabel = 
“Frequency”), “$out\\Results of paramter c”)
    savefig(histogram(coef[:,4], bins = range(minimum_
values[4], maximum_values[4], 10), title = “d”, legend 
= false, xlabel = “Values of the parameter d”, ylabel = 
“Frequency”), “$out\\Results of paramter d”)
    savefig(histogram(coef[:,5], bins = range(minimum_
values[5], maximum_values[5], 10), title = “e”, legend 
= false, xlabel = “Values of the parameter e”, ylabel = 
“Frequency”), “$out\\Results of paramter e”)
    savefig(plt_normal, “$out\\Plot Normal”)
    savefig(plt_acumulado, “$out\\Plot Acumulado”)  
    println(“$menor_kscalc%, proporção de vezes que 
o valor de KS calculado foi menor que o valor de KS 
tabelado”)
  end

  OPTMBELR(X, 100, [1.0,2.0,3.0,4.0,5.0], “G:\\ 
Resultados2\\”)
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