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Abstract

Background: Geospatial technologies have emerged as powerful tools for optimising forest management, improving 
operational precision, and supporting data-driven decision-making. This study aims to understand the technologies 
adopted by the New Zealand plantation forest industry and identify any barriers to the uptake of geospatial tools. This is 
the third such study, following comparable surveys in 2013 and 2018.

Methods: An online survey was sent to 29 organisations in New Zealand’s forestry sector. Topics included organisation 
demographics, data acquisition, positioning technology, remote sensing technologies, software, and Artificial Intelligence 
(AI). Specifically, the survey focused on five remote sensing technologies: aerial photography, aerial videography, 
multispectral imagery, hyperspectral imagery, and LiDAR. Each section contained questions relating to the acquisition 
and application of the remote sensing technology and the software used for data processing. Questions were included to 
ascertain barriers to adoption. To identify changes in technology usage and uptake, results were compared to the 2013 and 
2018 studies.

Results: Twenty-seven of the 29 queried organisations responded, resulting in a 93% response rate. Responding 
organisations managed 1,283,000 hectares (74% of New Zealand’s plantation forest estate), with estate sizes ranging from 
about 7,000 to 200,000 hectares. Data acquisition from online portals included aerial imagery (100%), property ownership 
data (96%), and elevation data (89%), primarily from the Land Information New Zealand (LINZ) Data Service. Global 
Navigation Satellite Systems (GNSS) technology was universally employed. All respondents acquired aerial photography. In 
addition, 67% acquired multispectral imagery, 4% acquired hyperspectral imagery, and 93% acquired LiDAR data. The AI 
topic was surveyed for the first time and the technology was used by 30% of respondents when working with geospatial 
data. The main barrier to using remotely sensed data was the lack of perceived benefits, while the primary barrier to AI 
adoption was a lack of staff knowledge and training. Except for hyperspectral imagery, all remote sensing technologies saw 
increased uptake since 2013. LiDAR experienced the largest growth, with uptake increasing from 17% in 2013 to 93% in 
2023. ArcGIS remains the primary tool for geospatial analysis, used by 96% of respondents. Notably, the use of open-source 
software such as QGIS increased by 31% over the past decade.

Conclusions: This study demonstrated an overall increase in the usage of geospatial technology in the forestry sector. To 
promote further uptake, it is important not only to increase exposure to available tools and provide training, particularly 
on emerging technologies such as AI, but also to demonstrate the practical and economic value these technologies can offer. 
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Introduction 
Over the last decade, the New Zealand forestry 
industry has undergone significant transformations, 
including the adoption of geospatial technologies to 
support precision planning, operational efficiency and 
sustainable resource management (de Gouw et al. 2020; 
Morgenroth & Visser 2013). The rapid development of 
geospatial technologies over the past 50 years has made 
data acquisition and application in forest management 
more cost-effective and efficient (Lechner et al. 2020). 
These technologies, including Global Navigation Satellite 
Systems (GNSS), Geographic Information Systems (GIS), 
and remote sensing, provide accurate, site-specific 
data for decision-making and enable access to spatial 
information at unprecedented resolutions, such as wall-
to-wall 3D datasets and sub-metre imagery. 

The understanding and utilisation of geospatial 
technologies in forestry have grown significantly over 
time (Sonti 2015). While aerial photography has been 
employed for forest management since the 1940s 
(Standish 1945), the introduction and advancement of 
remote sensing technologies like Light Detection and 
Ranging (LiDAR), photogrammetry and positioning 
technologies has revolutionised precision forestry (Bill 
et al. 2022). Precision forestry involves using geospatial 
technologies and analytical tools to gather high 
resolution data tailored to specific forest management 
needs (Dash et al. 2016). These technologies have 
facilitated the creation of various products such as 
digital elevation models (DEMs), canopy height models 
(CHMs), and vegetation indices, which are invaluable for 
characterising forest resources and site conditions. The 
use of aerial videography is another tool used in forestry 
as unmanned aerial vehicles (UAVs) become more 
common among forestry organisations. Applications of 
aerial videography particularly include communication, 
mapping, and monitoring controlled burns (McElwee 
2021).

Improved geospatial technologies and products 
have diverse applications across forestry operations, 
from forest boundary mapping (Xu et al. 2017), species 
classification (Deur et al. 2020), monitoring forest health 
(Housman et al. 2018), planning harvesting and road 
construction (González et al. 2008; Picchio et al. 2018), 
and conducting forest inventory (Lechner et al. 2020). 
By combining geospatial technologies with traditional 
ground-based methods, the accuracy and efficiency of 
forest descriptions, particularly for forest inventory, 
have improved (Pascual et al. 2020). Remote sensing 
data acquisition predominantly relies on satellites and 
aircraft (Fu et al. 2020). However, advancements in 
sensor technology and the emergence of UAVs have 
transformed geospatial data collection methods (Zhang 
& Zhu 2023), offering forest managers a timely, efficient, 
and cost-effective means of collecting data for specific 
target areas (Guimarães et al. 2020).

In New Zealand specifically, geospatial technologies 
have facilitated numerous improvements in plantation 
forestry. For instance, airborne LiDAR has been used 
for inventory (Watt et al. 2024) and harvest planning 
and road design (Dash et al. 2016). Additionally, 

multispectral satellite imagery has supported forest 
type differentiation (Xu et al. 2023), health assessments 
(Dash et al. 2018), and productivity analysis (Watt et al. 
2016). The increased use of UAVs in New Zealand has 
further enabled plantation managers to rapidly acquire 
high-resolution imagery or LiDAR for estimating tree-
level volume (Watt et al. 2025), biomass (Ye et al. 2025), 
and post-planting survival (Pearse et al. 2020).

An exciting next step in geospatial applications is 
the integration of Artificial Intelligence (AI), which 
refers to the development of computer systems that can 
mimic human intelligence, including learning from data, 
problem-solving, and understanding natural language. 
Subfields of AI include machine learning, deep learning, 
computer vision, and data analytics, enabling machines to 
perform tasks autonomously (Döllner 2020). In forestry, 
AI, specifically machine learning and deep learning, is 
transforming how forests are managed and monitored, 
enhancing decision-making processes and operational 
efficiency. For example, machine learning algorithms 
can analyse remote sensing data to automate forest 
inventory (Corte et al. 2020), identifying tree species 
(Deur et al. 2020) and estimating biomass and carbon 
storage (Fromm et al. 2019). Deep learning techniques, 
specifically convolutional neural networks (CNNs), are 
used for high-accuracy tree species classification (Egli & 
Höpke 2020), allowing managers to monitor biodiversity 
across large forest areas (Shivaprakash et al. 2022). In 
pest management, AI models can detect early signs of 
disease or pest infestation from high resolution imagery, 
helping to mitigate biosecurity threats before they 
become widespread (Liu et al. 2022). AI-based computer 
vision can identify seedlings from aerial imagery, enabling 
forest managers to assess reforestation progress without 
intensive ground surveys (Pearse et al. 2020). With 
continued advancements, AI-driven geospatial tools are 
expected to play an increasingly significant role in forest 
management, providing actionable insights that support 
sustainable forestry practices and improve the precision 
of operations.

However, there are ongoing challenges associated 
with the widespread use of geospatial technologies,  
particularly the shortage of skilled professionals. 
The role of spatial specialists, including GIS analysts, 
developers, and consultants, has been officially 
recognised on New Zealand’s Long Term Skill Shortage 
List  (LTSSL) (Land Information New Zealand 2025). 
This shortage can hinder the adoption of these 
technologies in various sectors, including forestry. 
Additionally, the cost of acquiring and utilising hardware 
and software for geospatial data processing can be a 
barrier for companies. Yet the availability of publicly 
accessible datasets and the existence of numerous 
software programmes, such as ESRI’s ArcGIS, or free 
alternatives like QGIS and Google Earth, have made 
geospatial information more accessible and affordable. 
The increasing adoption of geospatial technologies 
in everyday forest management practices has made 
geospatial skills and knowledge essential for entry-level 
jobs in forestry companies (Bettinger & Merry 2018). 
Graduates in forestry are increasingly expected to have 



geospatial skills, reflecting the growing integration of 
geospatial components in forestry education programs 
(New Zealand School of Forestry 2023).

Previous studies that have investigated the uptake of 
geospatial technology identified the following barriers 
to the use of and entry to GIS: insufficient staff training 
programs, lack of awareness of tools and benefits, 
and lack of initiatives or mandates (Ye et al. 2013). In 
addition, lack of support from managers to understand 
technology, a shortage of technical capacity and trained 
personnel, a lack of financial capacity and a limited 
budget and, finally, an unwillingness to change (Kim et 
al. 2018). 

Understanding the uptake, barriers and application 
of geospatial technologies in New Zealand’s forest 
management sector holds significant importance. It 
enables organisations to optimise data utilisation and 
identify barriers, helping them develop strategies to 
overcome these barriers. This can lead to time and 
cost savings while providing new insights for decision-
making. Two studies have been conducted on the uptake 
and barriers of geospatial technologies in this sector 
previously: a benchmark study in 2013 (Morgenroth 
& Visser 2013) and a follow-up survey in 2018 (De 
Gouw et al. 2020). We see an opportunity to update the 
available information on the adoption and application of 
these technologies in New Zealand’s forest management 
sector, with the last study conducted five years ago. 

Therefore, this study aims to address three main 
research objectives:
1. Identify current geospatial technologies employed in 

New Zealand’s forest management sector.

2. Identify barriers hindering the adoption of geospatial 
technologies.

3. Determine changes in the uptake of geospatial 
technologies over the past ten years.

Methods 
An online survey was developed and distributed to 
organisations in the forestry sector in August 2023 using 
Google Forms. This ensured that participants nationwide 
could conveniently and promptly receive and complete 
the survey. The survey was distributed to specific 
individuals or positions within each organisation. The 
initial list included organisations identified in the New 
Zealand plantation forest industry facts and figures 
publication (New Zealand Forest Owners Association 
2023) that manage over 10,000 hectares. This ensures 
representation from organisations managing a 
significant portion of New Zealand’s plantation forest 
estate. Additionally, other forestry organisations which 
are not included in this list but actively use geospatial 
technologies were also identified and considered. These 
particularly included forest consultants and research 
institutes. 

All organisations were contacted before the survey 
was distributed to identify the best person within 
the organisation to complete the survey. The ideal 

respondent within each organisation was a GIS specialist 
who used the technology on a daily basis. This was to 
ensure all questions were understood, allowing for 
accurate representation of the organisation. Once the 
survey had been distributed, a 3-week period was 
given for respondents to complete the survey. A follow-
up email was sent to non-respondents to encourage a 
higher response rate. 

The survey questions were developed based on the 
previous studies conducted by Morgenroth and Visser 
(2013) and De Gouw et al. (2020), with necessary 
updates to reflect changes in available geospatial 
technologies. Each remote sensing technology had a 
definition associated with it to minimise confusion. The 
survey consisted of ten sections (the full survey can be 
found in the supplementary information) covering the 
following topics:
1.   Respondent and organisation profile

2.   Data acquisition

3.   Positioning technology

4.   Aerial photography

5.   Aerial videography

6.   Multispectral imagery

7.   Hyperspectral imagery

8.   LiDAR

9.   Software applications used for geospatial data

10. Artificial Intelligence tools used for geospatial data

Due to the detailed nature of the survey, an estimated 
time of 30 minutes was required to complete the survey. 
An effort was made to provide multiple-choice questions, 
where expected answers had been generalised and 
provided for the respondent to select. Multiple-choice 
questions were accompanied by open-ended questions 
to allow respondents to provide additional details. 
Respondents also had the option to add answers not 
provided in the choices through an “other” option. Most 
questions were compulsory to ensure comprehensive 
responses. 

The survey included conditional questions to 
tailor the survey flow based on respondents’ previous 
answers. For example, if a respondent indicated the use 
of a particular remote sensing technology, subsequent 
questions would inquire about the data acquisition 
methods and the application of acquired products in 
forest management. If an organisation did not use a 
specific technology, questions would explore the reasons 
or barriers preventing its adoption.

The software application section of the survey included 
a table with each software used and the corresponding 
remote sensing data type or application. Respondents 
had the option to select which software is used for each 
remote sensing data type or application, providing 
an overview of software used within the industry. 
The layout for this question allowed respondents to 
complete the survey efficiently and ensure there were no 
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repetitive questions for each remote sensing section, as 
the software used for each application might be similar. 
The final section on AI was a new addition to the survey 
series. It asked whether respondents had used AI for 
geospatial purposes and how they applied it.

To ensure the relevance and comprehensibility of 
the survey, a draft survey was administered to two 
industry experts, incorporating their feedback to make 
necessary revisions and additions. The final survey 
was then distributed to the selected organisations, and 
responses were recorded and analysed using descriptive 
statistics. Open-ended responses were categorised to 
identify trends and patterns. The full survey is provided 
as supplementary data.

Descriptive statistics were used to describe the 
current usage of geospatial technology and barriers 
associated with these technologies. Opened ended 
questions were grouped based on similarity to allow 
for trends to be identified. To determine the uptake and 
progression of the geospatial technologies, the survey 
results were compared to the findings of the previous 
study by Morgenroth and Visser (2013) and De Gouw et 
al. (2020).

Results and Discussion

Demographic information
Twenty-seven out of twenty-nine contacted organisations 
completed the survey, resulting in a 93% response rate. 
These organisations managed approximately 1,283,000 
hectares of plantation forests, which accounts for 74% of 
New Zealand’s 1.73 million hectares of plantation forest 
estate. The estates managed by individual organisations 
ranged from about 7,000 to 200,000 hectares. In 
terms of organisation types, 85% (n=23) were forest 
owners and/or managers, while 15% (n=4) were 
forest consultants or research institutes. The survey 
targeted each organisation’s geospatial manager, but 
when unavailable, the most appropriate staff member 
responded. Among the respondents, most of them were 
in GIS-related positions, except 15% were foresters and 
4% were wood-flow managers.
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Data acquisition
All organisations used free, publicly available data portals 
to support forest management (Table 1). From these 
portals, aerial imagery was the most used product, with 
100% of respondents employing it, followed by property 
ownership and boundaries (96%) and elevation data 
such as DEMs (89%). Other frequently accessed datasets 
were Land Cover Database (LCDB) (78%), hydrological 
features (67%), topographic maps (63%), roads and 
addresses (59%), the National Environmental Standards 
for Plantation Forestry (NES-PF) Erosion Susceptibility 
Classification (59%), and the digital soil map (S-MAP) 
(56%) were accessed by over 50% of respondents. Other 
datasets and online data portals were used by forestry 
organisations but had lower uptake.

Positioning technology
All organisations used GNSS technology, and 70% used 
two or more types of receivers, generally for different 
tasks. Consumer-grade receivers built into devices 
(e.g., smartphones) were the most widely used (81%), 
followed by consumer-grade handheld receivers (e.g., 
Garmin GPSMAP 62s) (70%). Survey-grade receivers, 
which offers sub-metre precision, were used by 37% 
of organisations. Mapping-grade receivers, which offer 
less than 5 m, were used by 26%. Two organisations 
(8%) used Satellite Based Augmentation Systems (e.g., 
SouthPAN) to improve GNSS precision and accuracy.

The primary applications of GNSS receivers were 
stand/forest mapping (such as locating planting extent) 
(48%), field navigation (44%), establishment of ground 
control points (30%), and hazard identification (15%). 
Other applications included forest inventory, road and 
cutover mark-ups (each used by 11% of respondents). 
Less common applications included historic or cultural 
site identification and species observation. Integrating 
GNSS technology with traditional ground-based methods 
significantly enhances the accuracy and efficiency of 
forest descriptions, such as those used in forest inventory 
(Pascual et al. 2020). This combined approach is likely to 
be highly beneficial for forestry organisations and could 
be further developed for improved forest management.

Portal Usage (%) Link
LINZ Data Service 100 https://data.linz.govt.nz/data/
Koordinates.com 81 https://koordinates.com/data/
Local Council 81 Various
Ministry for Primary Industries 59 https://data-mpi.opendata.arcgis.com/
Land Resource Information Systems Portal (LRIS) 56 https://lris.scinfo.org.nz/
Ministry for the Environment (MfE) 56 https://data.mfe.govt.nz/data/
National Institute of Water and Atmospheric 
Research1 (NIWA)

30 https://data-niwa.opendata.arcgis.com/explore

Statistics New Zealand 15 https://datafinder.stats.govt.nz/
1 Now Earth Sciences New Zealand

TABLE 1: Online data portal usage by respondents.



Remote sensing data

Aerial photography
Aerial photography was the most used data source by 
all respondents, with UAVs being the most common 
platform for acquiring it (93%), followed by aeroplanes 
(63%). UAVs provide timely, efficient and cost-effective 
data collection for specific target areas (Guimarães et al. 
2020). Eleven percent of respondents acquired imagery 
via helicopter, and one respondent used Google Earth, a 
combination of aerial photography and satellite imagery. 
Ninety-six percent of respondents derived true-colour 
orthophotos, and 48% derived photogrammetric point 
clouds, primarily used for DEMs and stem counts.

The frequency of aerial photography acquisition 
was operation-specific, often coinciding with activities 
like pre- and post-harvest, post-planting, and cutover 
mapping. Estate-wide imagery was acquired at intervals 
ranging from monthly to every three years, depending 
on the data collection method and estate size. Spatial 
resolution varied based on the acquisition method and 
intended application. The spatial resolution of UAV- 
acquired imagery ranged from 0.02 m to 0.5 m, while 
airplane-acquired imagery ranged from 0.1 m to 0.5 
m. Some organisations reported using resolutions of 2 
m or larger, likely due to application needs or errors in 
responses.

Aerial videography
Fifty-six percent of respondents that responded to the 
survey acquired aerial videography. The main barrier to 
not using aerial videography was no perceived benefit 
(83%), and the current staff’s lack of knowledge or 
training (42%). Cost (17%) and not aware of aerial 
videography (17%) were also barriers. For respondents 
who used aerial videography, they all acquired via UAVs 
(100%), and 20% also used helicopters to acquire 
aerial videography. Respondents only acquired aerial 
videography as required, mainly for environmental 
impact assessments such as assessing effects of 
windthrow.

Multispectral imagery
Multispectral imagery was acquired by 67% of 
respondents. The main barriers of using the imagery 
included no perceived benefits (56%), current lack 
of staff knowledge or training (44%) and cost (33%). 
Three respondents indicated they may use multispectral 
imagery in the future. Multispectral imagery was 
primarily acquired from satellites (89%), followed by 
aeroplanes (44%), and UAVs (22%). This aligns with 
findings from Fu et al. (2020) that multispectral imagery 
dominantly relies on satellites and aircraft. However, 
the increase in UAV data acquisition between 2018 and 
2023, shows that advancements in sensor technology 
and the emergence of UAVs have brought about changes 
in geospatial data collection methods (Zhang & Zhu 
2023). 

The most common satellite sensors used by 
organisations included Sentinel-2 (87%), PlanetScope 
(53%), and Landsat (33%). Respondents derived 

various products from multispectral imagery, including 
true colour composites, false colour composites, and 
vegetation indices. The main vegetation index used was 
the Normalised Difference Vegetation Index (NDVI) 
(37%). Other less commonly used vegetation indices 
included Simple Ratio (SR), Enhanced Vegetation 
Index (EVI) and Soil Adjusted Vegetation Index (SAVI), 
each used by one respondent. The spatial resolutions 
of the multispectral imagery differed depending on 
the platform. The spatial resolution acquired using a 
UAV was 5 to 10 cm, aeroplane-acquired multispectral 
imagery had spatial resolutions ranging from 0.05 to 3 
m, and satellite-acquired multispectral imagery ranged 
from 0.5 to 60 m.

Hyperspectral imagery
Only one respondent belonging to the respondent group 
- forest consultants or research institutes acquired 
hyperspectral imagery. The imagery was collected as 
needed, using UAVs or satellites. Barriers of not using the 
data included no perceived benefits (73%), current staff 
lack of knowledge or training (42%), cost (38%). While 
the use of hyperspectral data remains predominantly 
in the research domain, its utility for assessing disease 
(Watt et al. 2023), moisture stress (Watt et al. 2021), and 
nutrient status (Watt et al. 2020) has been demonstrated. 
However, its adoption in operational forestry remains 
limited, probably due to the high costs and complexity 
associated with data acquisition and processing.

LiDAR 
LiDAR was used by 93% of organisations. All respondents 
managing 10,000 ha or more acquired LiDAR data. Of the 
two respondents not using LiDAR, both managed fewer 
than 10,000 ha forests. One cited a lack of perceived 
benefits as the main barrier, while the other mentioned 
that cost and current lack of staff knowledge or training 
as obstacles to using LiDAR.  

When considering the acquisition and application 
of LiDAR data, there were notable differences between 
research institutes and consultancies, and forest 
management companies. Therefore, the following data 
analysis for LiDAR data was split into two categories: 
forest management companies and research institutes/
consultancies.

Forest management companies mainly acquired 
LiDAR data via aeroplanes (67%) and open data portals 
(57%), followed by UAVs (29%) and satellites (10%). 
Point cloud densities acquired ranged from 1 to 25 points 
per square metre. Six companies collected LiDAR data 
for their entire forest estates once, with two continuing 
on a regular cycle of three to five years. Three companies 
did not know their point cloud density, and ten reported 
varying densities. Companies acquiring UAV LiDAR 
had point densities over 100 points per square metre. 
Seventy-six percent of forest management companies 
engaged third parties for data processing, while 24% 
processed in-house, mainly generating surfaces. The 
main applications of LiDAR-derived products included 
harvest planning (100%), road mapping (65%) and 
forest inventory (39%).
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Research institutes and consultancies reported 
broader acquisition options, using open data portals 
(100%), UAVs (50%), airplanes (50%), static terrestrial 
platforms (50%), and mobile terrestrial platforms 
(50%). They collected LiDAR data as needed, with point 
densities ranging from 100 to 30,000 points per square 
metre. Seventy-five percent processed data in-house, 
focusing on a wide range of applications such as forest 
mapping, harvest planning, forest inventory, hazard 
assessment, survival analysis, and silvicultural planning.

Application of remotely sensed data
The most common applications of aerial imagery 
were cutover mapping, stand and forest mapping, and 
windthrow assessment (Table 2). Multispectral imagery 
was mainly used for cutover and forest stand mapping. 
LiDAR was primarily used for harvest planning, road 
mapping and forest inventory. LiDAR allows for rapid 
data collection over larger areas compared to time-
consuming manual measurements. While LiDAR can 
be used to estimate individual tree heights (Zörner 
et al. 2018), most forestry organisations are using it 
for generating surfaces such as DEMs or CHMs, which 
are commonly used for mapping and forest inventory. 
Hyperspectral imagery had the lowest application 
rate, being used only for forest health assessment and 
species identification. Improved geospatial technologies 
and products are now applied across diverse forestry 
operations. Studies have shown that remote sensing 
is instrumental in forest mapping (Xu et al. 2017), 

species classification (Xu et al. 2023), monitoring forest 
health (Housman et al. 2018), identifying biosecurity 
threats (Dash et al. 2019), planning harvesting and road 
construction (González et al. 2008; Picchio et al. 2018), 
and conducting forest inventory (Lechner et al. 2020), 
aligning with the findings of this survey. 

Software
Respondents primarily used ArcGIS Pro and ArcGIS 
Desktop to work with data collected from aerial 
photography, multispectral imagery, and hyperspectral 
imagery (Table 3). QGIS, a free open-source software, 
was also commonly used for aerial photography and 
multispectral imagery. ENVI was used for analysing 
hyperspectral imagery. For collecting and generating 
photogrammetric point clouds, the most common 
software included DroneDeploy (36%), Pix4Dmapper 
(36%), Agisoft Metashape (29%), and ESRI Drone2Map 
(14%). Other tools such as Site Scan, Maps Made Easy, 
and DJI Terra were each used by one organisation. The 
processing and analysis of photogrammetric and LiDAR 
point clouds were primarily done using Python and 
LASTools, respectively. Additionally, the open-source 
package LidR and related packages in R were commonly 
used (Table 4).

Artificial intelligence
As this was the first survey iteration to specifically 
include questions on AI use for geospatial purposes, we 
intentionally adopted a broad definition that includes 
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Application Aerial 
photography

Multispectral 
imagery

Hyperspectral 
imagery

LiDAR

Cutover mapping 27 13 0 6
Harvest planning 27 13 0 6
Stand/forest mapping 26 13 0 12
Windthrow assessment 26 8 0 6
Road mapping 22 3 0 15
Site preparation 21 2 0 9
Hydrological features 19 2 0 12
Silvicultural planning 19 3 0 9
Forest inventory 18 5 0 13
Hazards 16 0 0 9
Forest health assessment 15 9 1 4
Species identification 15 7 1 4
Fire assessment 13 1 0 3
Historic/cultural site identification 13 0 0 11
Landslide/soil displacement assessment 11 3 0 7

TABLE 2: Application of remote sensing imagery to forest management with the top five applications in each category 
shown in bold. The numbers represent the number of respondents. 



both classical machine learning algorithms (e.g., random 
forest) and more contemporary AI approaches, such 
as deep learning (e.g., CNNs). Future surveys will aim 
to refine this definition to provide clearer guidance for 
respondents and to enable more precise comparisons 
across different AI methodologies and stages of adoption 
and advancement.

Artificial intelligence was used by 30% of respondents 
when working with geospatial data. The main reasons 
that organisations had not adopted AI included lack of 
staff knowledge or training (68%), no perceived benefits 
(21%), lack of awareness of AI models (21%), and cost 
(11%). Two respondents indicated potential future use 
of AI. The most common AI models used were Random 
Forest (57%), CNN (57%), You only look once (YOLO) 
(29%), and eXtreme Gradient Boosting (XGBoost) (14%). 
These models were typically used in conjunction with 
remote sensing data, primarily from aerial photography 
(88%), followed by multispectral imagery (50%) and 
LiDAR (50%). Key applications of AI included stand/
forest mapping (50%), forest inventory (50%), and 
tree detection (38%). Other applications were cutover 
mapping (25%), forest health assessment (25%), 

and silvicultural planning (25%). Less common uses 
included fire assessment, landslide or soil displacement 
assessment, species identification, and windthrow 
assessment, each by one respondent.

Artificial intelligence is still at an early stage of 
adoption in New Zealand’s forest industry, but its 
integration with geospatial technologies presents a 
valuable opportunity to improve how plantation forests 
are managed. When applied effectively, AI can enhance 
decision-making by increasing operational efficiency, 
precision, and responsiveness. The adoption of AI in 
geospatial applications represents a major advancement 
in the sector (Shivaprakash et al. 2022) and is expected 
to grow (Chasmer et al. 2022). By combining machine 
learning, deep learning, computer vision, and data 
analytics, AI can support a wide range of decision-
making tasks. Key applications include automated 
forest inventory (Hamedianfar et al. 2022), seedling 
identification (Fromm et al. 2019) and disease detection 
(Watt et al. 2024). Additionally, AI enables rapid analysis 
of large geospatial datasets from satellite imagery, UAVs, 
and ground-based sensors to provide timely insights 
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TABLE 3: Software used to visualise and analyse each type of imagery. The numbers represent the number of respondents. 
Software class Software Aerial 

photography
Multispectral 
imagery

Hyperspectral 
imagery

Geographic Information system ESRI ArcGIS Pro 24 16 0
ESRI ArcGIS Desktop (e.g. ArcMap) 20 13 0
QGIS (free) 10 6 0
Google Earth Engine 4 4 0
Global Mapper 2 1 0
GRASS GIS (free) 1 1 0

Image analysis ENVI 1 1 1
ERDAS IMAGINE 0 0 0
Trimble eCognition 0 0 0

Geospatial data programming R (free) 4 4 0
Python (free) 3 4 0
GDAL (free) 2 2 0

Specialist forestry software ATLAS GeoMaster 7 3 0

Software Photogrammetry point cloud LiDAR point cloud
Cloudcompare 2 3
Computree 1 1
DJI Terra 1 1
Fusion 2 2
LASTools 2 7
LiDAR360 1 1
Python 4 3
R - LidR package 3 4
R - other packages 3 3

TABLE 4: Software used to process and analyse point clouds. The numbers represent the number of respondents.



for forest management. For example, satellite-based 
machine learning approaches have effectively predicted 
disease outbreaks (Camarretta et al. 2024) and 
estimated forest carbon stocks (Illarionova et al. 2024), 
while UAV imagery combined with deep learning models 
has improved assessment of seedling detection (Pearse 
et al. 2020), forest health (Șandric et al. 2022) and fire 
detection (Shamta & Demir 2024). As AI capabilities 
expand, their integration with geospatial tools is 
expected to drive more proactive and data-informed 
approaches to plantation management.

Changes in uptake and barriers (2013-2023)
The uptake and barriers to using geospatial technologies 
have evolved over the past decade since the first 
(Morgenroth & Visser 2013) and second (De Gouw et 
al. 2020) comparable surveys. There have been changes 
in the proportions of organisations using each grade 
of GNSS receivers. In 2013, no companies reported 
using consumer-grade receivers built into devices 
such as mobile phones. This increased to 65% in 2018 
and 70% in 2023 (Table 5). This rise is attributed to 
the availability, adaptability, accuracy, and low cost of 
smartphones (Zangenehnejad & Gao 2021). In contrast, 
the use of dedicated handheld consumer-grade devices 
(e.g., Garmin 60CSx) has decreased from 100% in 2013 
to 83% in 2018, and further to 70% in 2023. The use of 
mapping-grade receivers decreased from 41% in 2013 
to 22% in 2018 but increased slightly in 2023 to 26% 
of respondents. Survey-grade receivers are continuing 
to increase in usage, with 37% of respondents using 
these in 2023, an increase from 12% in 2013 and 22% 
in 2018. This increase is likely to relate to the increased 
use of remotely sensed data sets, particularly LiDAR data 
acquisition. The rise in the use of survey-grade receivers 
is likely due to the need to co-register LiDAR data and 
ground plots or to accurately map forest boundaries. 
Additionally, survey-grade receivers can offer enhanced 
accuracy under forest canopies compared with 
consumer-grade receivers (Danskin et al. 2009), which 
can be one of the most limiting factors for spatial 
positioning technologies when working in closed canopy 
forests.

The uptake of remote sensing technologies has 
generally increased over the past five and ten years, 
except for hyperspectral imagery (Table 6). Hyperspectral 
imagery usage decreased from 9% of organisations 
in 2018 to 4% in 2023. LiDAR demonstrated the most 

significant progression, with its uptake rising from 
17% in 2013 and 70% in 2018 to 93% in 2023. Aerial 
photography maintained its universal usage, with 100% 
of companies using it both five years ago and now. The 
adoption of multispectral imagery showed a modest 
increase of 19%, rising from 48% to 67% use in the past 
five years.

The ubiquitous use of aerial photography highlights 
its importance in forestry management. While the 
derivation of true colour orthophotos has remained 
steady, the derivation of photogrammetric point clouds 
increased from 32% in 2018 to 48% in 2023. This 
rise is likely due to the lower costs associated with 
photogrammetric point clouds compared to LiDAR point 
clouds, despite their similar accuracies (Liu & Boehm 
2015; Cao et al. 2019). A high-end photogrammetry 
system could cost up to USD 30,000 whereas manned 
LiDAR or UAV LiDAR systems can cost upwards of 
USD 150,000 and USD 120,000 respectively (Loosli 
2023). Much cheaper consumer-grade UAV LiDAR 
systems, such as the DJI Zenmuse L1 and L2 sensors, 
cost around USD $8,000 and have proven effective in 
estimating DBH and volume (Watt et al. 2024), despite 
higher range measurement noise and positional errors 
compared with high-end LiDAR sensors (Mandlburger et 
al. 2023). Aerial videography, although not included in 
previous surveys, shows a high usage rate with 56% of 
respondents using it. 

The uptake of multispectral imagery increased from 
48% in 2018 to 67% in 2023. The spatial resolution of 
multispectral imagery now ranges more widely than in 
2018, with UAV imagery achieving resolutions as fine 
as 5 cm and satellite-based products, particularly pan-
sharpened products, reaching as fine as 50 cm. As sensors 
for multispectral imagery become more accessible and 
affordable for UAVs, its acquisition is likely to continue 
growing because of the information that can be gained 
due to increased spectral resolution. Studies have shown 
that infrared bands (when used in vegetation indices) 
can be used to support forest type differentiation (Ye et 
al. 2021), forest health assessment (Dash et al. 2018), 
biomass estimation (Naik et al. 2021).

The low uptake of hyperspectral imagery is expected 
due to the extensive data processing required for its high 
number of bands and the high acquisition costs (Hycza 
et al. 2018). Current applications of hyperspectral 
imagery are primarily in the research phase, focusing 
on forest species identification (Modzelewska et al. 
2020), nutritional deficiency detection (Watt et al. 
2019) and moisture stress assessment (Watt et al. 
2021). Photogrammetric processing and multispectral 
imagery have proven to be viable alternatives for these 
applications (Guimarães et al. 2020), further limiting 
the utility of hyperspectral imagery. The most reported 
barrier to adopting hyperspectral imagery was a 
perceived lack of benefits, suggesting that users have 
yet to see compelling value in operational contexts. 
Despite the gradual reduction in hyperspectral imagery 
costs (Hycza et al. 2018), acquisition remains expensive 
due to the limited number of providers in New Zealand 
(Schimel 2020). However, as hyperspectral data becomes 
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Year Consumer 
- built into 
device

Consumer - 
handheld

Mapping Survey

2013 - 100 41 12
2018 65 83 22 22
2023 81 70 26 37

TABLE 5: Comparison of percentage of respondents 
using GNSS receivers by grade in 2013, 2018 and 2023.



more affordable and demonstrates clear benefits for 
forest management over other remote sensing methods, 
its adoption may increase in the future.

The uptake of LiDAR has seen the most significant 
increase over the past 10 years, with all organisations 
managing more than 10,000 hectares now using 
this data.  One of the biggest changes in LiDAR data 
acquisition between 2018 and 2023 was the introduction 
of open data portals. These portals have become one 
of the most common ways respondents acquire LiDAR 
data. The National Elevation Programme, which aims 
to provide LiDAR coverage across approximately 
80% of the country (Land Information New Zealand 
2023a), has contributed to the availability of freely 
accessible LiDAR data in New Zealand. Whilst this data 
is still limited to some parts of New Zealand, it covers a 
significant portion of New Zealand’s plantation forests. 
This accessibility has created opportunities for smaller 
organisations that were previously restricted by the cost 
of acquiring LiDAR data. Furthermore, the availability of 
ready-to-use products derived from LiDAR data, such as 
DEMs and Digital Surface Models (DSMs), has benefited 
forest managers who previously lacked the expertise 
or resources to process LiDAR data themselves. In 
addition to improved accessibility, the growing adoption 
of LiDAR is likely driven by its widely recognised value 
in operational forestry. Enhanced inventory accuracy 
can help reduce harvesting costs and increase buyer 
confidence, hence contributing to higher returns from 
forest sales. This compelling value proposition, reinforced 
by frequent exposure at industry forums and events, has 
further supported its uptake. Both the 2013 and 2018 
surveys suggested that cost was the largest barrier to 
acquiring LiDAR data, but the 2023 survey indicates that 
cost is now as much a barrier as staff training and lack of 
perceived benefits. As more LiDAR data becomes openly 
available, its usage is expected to increase. However, the 
forestry industry may face challenges in adoption due 
to a shortage of trained GIS specialists, which are listed 
on New Zealand’s “Long term skill shortage list” (Land 
Information New Zealand 2025). 

This survey also looked at forest research institutes 
and companies separately for the first time, with results 
indicating research institutes appear significantly more 
advanced in LiDAR acquisition than forest companies. 
Static and mobile terrestrial platforms were only used by 
two companies, likely due to their lack of suitability for 
large-scale forests (Chen et al. 2019). Most companies 
that process their own LiDAR data use a limited number 
of processing methods, primarily focusing on generating 
surfaces. In contrast, research institutes undertake 
detailed processing of point clouds and work with 

cutting-edge technologies such as deep learning fulfilling 
their role of testing and de-risking technologies to pave 
the way for adoption by companies.

The increasing use of AI in society is reflected 
in its growing use by a notable portion of forestry 
organisations, likely driven by advancements in 
computing power and AI algorithms. However, the 
most common barrier preventing AI usage was the lack 
of staff knowledge and training. More education and 
training for geospatial professionals will be required 
to understand and utilise AI models. Tertiary education 
and training providers will likely have the most impact 
on the future uptake of AI models. AI models were most 
commonly used in conjunction with high-resolution 
aerial photography, highlighting the ongoing importance 
of aerial photography in the forestry industry.  

The most frequently cited barrier to adopting 
geospatial technology was a limited perception of its 
benefits. This marks a shift from previous studies, where 
barriers were more often related to staff education and 
the cost of data acquisition. This shift could indicate an 
increase in skilled GIS analysts entering the workforce, 
potentially influenced by the undergraduate and 
postgraduate geospatial courses taught at 12 tertiary 
institutes around New Zealand (Land Information New 
Zealand 2023b), and over 50% of young geospatial 
professionals holding postgraduate degrees (De Róiste 
2016). It may also reflect that some users have trialled 
geospatial technologies in the past but did not see 
sufficient value for their specific operational context. In 
such cases, the barrier may come from experience rather 
than a lack of awareness, which suggests a need to better 
demonstrate the tangible benefits of these technologies. 
More broadly, this shift in barriers could signal that 
the sector is entering a new phase of the technology 
adoption cycle. With most foundational tools now in 
routine use and the ‘low-hanging fruit’ largely addressed, 
future growth may depend on developing new, value-
adding applications, particularly those powered by 
AI. Demonstrating their utility in forestry settings and 
building practitioner capability will be essential to 
driving the next wave of innovation and uptake.

The survey results indicate significant changes in 
the uptake of software used for processing and using 
products from geospatial technologies in New Zealand’s 
plantation forest management sector over the past five 
and ten years (Table 7). The largest increase was in the 
uptake of free GIS software, which grew from 6% in 2013 
to 22% in 2018 and then to 37% in 2023. ERSI ArcGIS 
has experienced a notable increase in use, rising by 
14% compared to 2013. In contrast, the use of MapInfo 
dropped from 18% in 2013 to 0% in 2018, and it has 
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Year Aerial photography Aerial videography Multispectral imagery Hyperspectral imagery LiDAR data

2013 88 - 35 - 17
2018 100 - 48 9 70
2023 100 56 67 4 93

TABLE 6: Comparison of percentage of respondents using remotely sensed imagery in 2013, 2018 and 2023.
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continued to have no usage within the industry in 2023. 
In terms of commercial image analysis software, ERDAS 
and Trimble e-Cognition both showed decreases of 13% 
and 4%, respectively between 2018 and 2023. There was 
a significant increase in organisations using point cloud 
analysis and processing software in 2023, with use of 
LAStools increasing by 26% since 2013. This growth in 
LiDAR processing tools aligns with the increased LiDAR 
acquisitions reported in the survey.

Future survey considerations
This study focused on the uptake of geospatial 
technologies but did not assess the value realised from 
their use. Future surveys should address this by including 
questions on perceived benefits, cost-effectiveness, 
and return on investment, and by analysing how 
these outcomes vary across different estate sizes and 
ownership models.

Additionally, this survey used a deliberately broad 
definition of AI, including both classical machine learning 
methods and more recent deep learning techniques. 
While this approach provided an initial overview of tools 
currently in use, it limits the ability to track the uptake 
of emerging AI technologies. Future surveys will adopt a 

more refined definition that emphasises contemporary 
deep learning and computer vision methods to enable 
clearer analysis of adoption trends.

Although this survey primarily targeted organisations 
managing large forest estates, future iterations should 
also consider placing emphasis on organisations with 
smaller holdings, which may play a role in driving 
innovation and early adoption of emerging technologies. 

Conclusions
The survey provides insights into the uptake and 

barriers of geospatial technologies use in the New 
Zealand plantation forest management sector. The survey 
included responses from 27 organisations, showing 
a high use of online data portals and freely available 
datasets. GNSS receivers and aerial photography were 
the most common geospatial technologies, used by all 
respondents. Aerial videography, multispectral imagery, 
and LiDAR were also used by most respondents. Although 
AI has been used by a few respondents, there is potential 
for increased use in the future. Hyperspectral imagery, 
on the other hand, has seen a decrease in usage.

The most common barriers restricting the use of 
geospatial technologies were no perceived benefits. 

Software class Software Organisations using software (%)
2013 2018 2023 10-yr change 5-yr change

Geographic Information 
Systems

ESRI ArcGIS (Desktop and Pro) 82 91 96 +14 +5
MapInfo 18 0 0 -18 +0
Global Mapper 0 9 7 +7 -2
Free GIS (QGIS, GRASS GIS) 6 22 37 +31 +15

Image Analysis ERDAS IMAGINE 12 13 0 -12 -13
Trimble eCognition 0 4 0 +0 -4
ENVI
Google Earth Engine

-
-

-
-

4
19

N/A
N/A

N/A
N/A

Geospatial programming GDAL* - - 7 N/A N/A
Python - - 15 N/A N/A
R (LidR or other) - - 15 N/A N/A

LiDAR or photogrammetric 
point cloud analysis and 
processing cloud analysis 
and processing

FUSION 0 9 7 +7 -2
LAStools 0 9 26 +26 +17
QT Modeller 0 9 0 +0 -9
Agisoft Metashape 0 9 15 +15 +6
Cloudcompare - - 11 N/A N/A
Computree - - 4 N/A N/A
DJI Terra - - 4 N/A N/A
LiDAR360 - - 4 N/A N/A

Specialist forestry software ATLAS GeoMaster 35 43 26 -9 -17

TABLE 7: Progression of uptake of software used when processing and using products from the geospatial technologies 
included in the survey. - means the tool was not reported in the response. 

*While only a few respondents explicitly reported using GDAL (Geospatial Data Abstraction Library), its actual use is likely more widespread as 
GDAL serves as a core dependency for many geospatial libraries in Python and R.
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Compared to barriers identified in previous surveys by 
De Gouw et al. (2020), staff knowledge and skills, and 
the cost of acquiring data is becoming less of a barrier. 
In 2018, cost was the main barrier for organisations not 
using LiDAR. The increasing availability and use of free 
online data portals and datasets, such as LiDAR from the 
NZ National Elevation Programme, may have impacted 
these barriers. The uptake of AI was primarily limited 
by a lack of staff training, indicating the need for further 
education in this area of geospatial technology.

The results of this survey highlight the continuing 
use and growing importance of geospatial technology 
in the forest management industry. These findings will 
help inform the industry on how to better capitalise on 
their acquired data and develop strategies to overcome 
identified barriers, ultimately promoting the widespread 
use of geospatial technology. While improving access and 
training, particularly for emerging technologies such as 
AI is important, it is equally important to demonstrate 
the practical and economic value these tools can 
deliver. A clearer understanding of such benefits is 
likely to support broader uptake across the sector. As 
access improves and applications mature, geospatial 
technologies are expected to play an increasingly integral 
role in forest management.
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Supplementary Information
Survey Details

Introduction
You are being invited to participate in a research project concerning geospatial technologies used in the New Zealand Forest 
Industry. This is being conducted by a final-year student from the School of Forestry, University of Canterbury, undertaking 
a Bachelor of Forest Engineering with Honours. This is the third time that the School of Forestry has run this survey, with 
previous surveys having been sent to industry in 2013 (Morgenroth & Visser 2013) and 2018 (de Gouw et al. 2020).

The intended recipient of this survey is your company’s geospatial manager or a person with knowledge of your company’s 
use of geospatial data, methods, software, and hardware. Before you decide to take part or not, it is important to understand 
the rationale for the research, and what participation involves.

Please read the following information. Feel free to discuss this with others, or ask for any clarification from the research 
team, and take time to decide whether to take part or not.

Why is this research being conducted?
The aim of this project is to understand the uptake of geospatial technologies in the New Zealand forestry industry. Specifically, 
the project seeks to understand which technologies have been adopted by the New Zealand Forest industry and to identify any 
barriers to the uptake of geospatial tools. It is hoped that this will help inform the industry on how to fully capitalise on their 
acquired data, as well as develop strategies to overcome any barriers identified, ultimately promoting widespread use in the 
industry.

Do I have to participate?
Participation is voluntary. In 2012, 17 companies participated, while in 2018, 23 companies participated. If you do not wish 
to participate or wish to withdraw from the questionnaire after starting it, please close your web browser, as incomplete 
questionnaires will be discarded. Doing so does not require a reason and has no consequences.

What will happen if I choose to take part?
If you do choose to participate, you will be invited to complete an online questionnaire, that will take approximately  
30 minutes to complete. We may contact you to clarify your responses, if necessary. 

What are the advantages of taking part?
There are no immediate benefits, financial incentives, rewards, or otherwise for participating in this research. However, it is 
hoped that this research project will help inform the industry on the current uptake of geospatial technologies and contribute 
to maximising the efficiency and effectiveness of forest management practices in New Zealand. Importantly, it helps to ensure 
that the geospatial curriculum at the School of Forestry continues to meet industry’s needs by identifying commonly used data, 
methods, software, and hardware. 

What are the possible disadvantages of taking part?
The research team anticipates no significant disadvantages associated with participation.

If I choose to take part, what will happen to the data?
The results of this survey will be used in comparison with the previous surveys completed in 2012 and 2018 to identify how the 
use of geospatial technologies has changed. All responses to the survey will be aggregated such that no individual company’s 
geospatial strategy is detailed or compromised. The use of this data will be limited to addressing the research purpose. 

At the end of this research project, a publicly available dissertation, including summaries of the anonymised data will 
be written. In addition, the research team may write and publish a journal article. In either case no information identifying 
participants or companies will be accessible. Examples of how the previous survey data were used can be found in Morgenroth 
& Visser (2013) and de Gouw et al. (2020).

Contact Details
If you would like more information, or have any questions about the project or your participation, please use the contact 
details below:

Primary contact
Name: Anna Manning
Role: BE(Hons) Forest Engineering Final Year Student
Email: ama557@uclive.ac.nz

Supervisor
Name: Dr Vega Xu
Role: Dissertation supervisor
Email: cong.xu@canterbury.ac.nz

mailto:ama557@uclive.ac.nz
mailto:cong.xu@canterbury.ac.nz
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If you have concerns about any aspect of this research project please contact Anna Manning in the first instance, then escalate 
to Vega Xu, the Supervisor.

We are particularly interested in gathering information relevant to the present. Please answer the following questions based on 
your company’s current geospatial technology usage. 
* Required

Company Profile
1.	 What is your name? *
2.	 What is your position title? *
3.	 What is the name of your company? *
4.	 Type of company? *

a.	 Forest Owner and Manager
b.	 Forest Manager
c.	 Forest Consultant
d.	 Other (please specify):

5.	 What is the net stocked area (hectares) of forests that your company manages in New Zealand? *
6.	 What stand record system do you use? (e.g. Geomaster) 
7.	 What forest estate model do you use? (e.g. Woodstock or Tigermoth)

Public Data Acquisition
8.	 Does your company use the Land Information New Zealand (LINZ) geographic data portal? *

a.	 Yes
b.	 No

9.	 Which of the following datasets does your company use from the Land Information New Zealand (LINZ) data portal?
a.	 Aerial photography
b.	 Elevation (e.g. Digital Elevation Models)
c.	 Property Ownership & Boundaries
d.	 Roads and Addresses
e.	 Topographic maps
f.	 Hydrological features (e.g. rivers, wetlands)
g.	 Other (please specify):

10.	 Does your company use the Koordinates geographic data portal? *
a.	 Yes
b.	 No

11.	 Which of the following datasets does your company use from the Koordinates data portal?
a.	 Virtual climate station network from NIWA
b.	 Aerial photography
c.	 Elevation (e.g. Digital Elevation Models)
d.	 Property Ownership & Boundaries
e.	 Roads and Addresses
f.	 Topographic maps
g.	 Hydrological features (e.g. rivers, wetlands)
h.	 Land Cover Database (LCDB)
i.	 New Zealand Environmental Data Stack (e.g. soil particle size, slope, annual precipitation)
j.	 The digital soil map (S-MAP)
k.	 Fundamental Soils Layer (FSL) (e.g. Soil Drainage)
l.	 Territorial Authority Boundaries
m.	 Statistical Area Boundaries
n.	 Land Use Carbon Analysis System (LUCAS)
o.	 Land Environments New Zealand (LENZ)
p.	 Climate (e.g. annual rainfall)
q.	 Scion’s Geospatial Surfaces (e.g. Site productivity layers)
r.	 Other (please specify):

12.	 Does your company use the Land Resource Information Systems (LRIS) geographic data portal? *
a.	 Yes
b.	 No

13.	 Which of the following datasets does your company use from the Land Resource Information Systems (LRIS) data 
portal?

a.	 Land Cover Database (LCDB)
b.	 New Zealand Environmental Data Stack (e.g. soil particle size, slope, annual precipitation)
c.	 The digital soil map (S-MAP)
d.	 Fundamental Soils Layer (FSL) (e.g. Soil Drainage)
e.	 Elevation (e.g. Digital Elevation Models)
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f.	 Land Environments New Zealand (LENZ)
g.	 Other (please specify):

14.	 Does your company use the Ministry for the Environment (MFE) geographic data portal? *
a.	 Yes
b.	 No

15.	 Which of the following datasets does your company use from the Ministry for the Environment (MfE) data portal?
a.	 Land Use Carbon Analysis System (LUCAS) Land Use Map
b.	 Land Use Carbon Analysis System (LUCAS) NZ Forest Clearing 2008-2020
c.	 Climate (e.g. annual rainfall)
d.	 Hydrological features (e.g. rivers, wetlands)
e.	 Other (please specify):

16.	 Does your company use the Stats NZ data portal? *
a.	 Yes
b.	 No

17.	 Which of the following datasets does your company use from the Stats NZ data portal?
a.	 Territorial Authority Boundaries
b.	 Statistical Area Boundaries
c.	 Other (please specify):

18.	 Does your company use Council geographic data portals? *
a.	 Yes
b.	 No

19.	 Which of the following datasets does your company use from the Council’s data portals?
a.	 Property Boundaries
b.	 Aerial Photography
c.	 Other (please specify):

20.	 Does your company use any other geographic data portals?
a.	 No
b.	 MPI data portal – NES-PF Erosion Susceptibility Classification
c.	 NIWA - Virtual climate station network
d.	 Other (please specify):

Positioning Technology
Positioning technology is the use of a global navigation satellite system (GNSS) to provide positioning, navigation, and timing 
data, this includes GPS, Galileo, GLONASS and BeiDou. 

21.	 What grade of global navigation satellite system (GNSS) does your company use? *
a.	 Consumer grade receiver built into device (e.g. iphone)- capable of <10m accuracy
b.	 Consumer grade receiver (e.g. Garmin GPSMAP 62s)- capable of <10 m accuracy, cost <$1,000
c.	 Mapping grade receiver (e.g. Trimble Nomad)- capable of <5 m accuracy, cost $1,000-$5,000
d.	 Survey grade receiver (e.g. Trimble GeoExplorer)- capable of <0.5 m accuracy, cost $5,000 +
e.	 None

22.	 Does your company use Satellite Based Augmentation Systems (e.g. SouthPAN)- capable of <0.1 m accuracy?
a.	 Yes
b.	 No

23.	 How does your company use its GNSS receiver(s)? * (e.g. boundary mapping)

Aerial Photography
Aerial photography consists of three bands (red, green, blue) and is acquired from an aerial platform. (e.g. plane, UAV).

24.	 Does your company use aerial photography? *
a.	 Yes
b.	 No

25.	 What are the reasons for not using aerial photography? *
a.	 Cost
b.	 No perceived benefits
c.	 Current staff lack of knowledge or training to use aerial photography
d.	 Was not aware of aerial photography
e.	 Other (please specify):

26.	 How is your aerial photography acquired? *
a.	 Unmanned Aerial Vehicle (drone)
b.	 Airplane
c.	 Helicopter
d.	 Other (please specify):

27.	 Do you derive true colour orthophotos (contain only red, green and blue bands (RGB)) and are geometrically 
corrected) from aerial photography? *

a.	 Yes
b.	 No
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28.	 Do you derive Photogrammetric Point Clouds from aerial photography? *
a.	 Yes
b.	 No

29.	 What product(s) does your company derive from Photogrammetric Point Clouds? *
a.	 Digital Elevation Model (DEM)
b.	 Canopy Height Models (CHM)
c.	 Mean Top Height (MTH) estimates
d.	 Stem count or stocking
e.	 Stem volume estimates
f.	 Biomass or carbon estimates
g.	 Other (please specify):

30.	 For what applications do you use your aerial photography? *
a.	 Cutover Mapping
b.	 Fire Assessment
c.	 Forest Health Assessment
d.	 Harvest Planning
e.	 Hazards
f.	 Historic/Cultural Site Identification
g.	 Hydrological Features
h.	 Forest Inventory
i.	 Landslide/Soil Displacement Assessment
j.	 Road Mapping
k.	 Silvicultural Planning
l.	 Site Preparation
m.	 Species Identification
n.	 Stand/Forest Mapping
o.	 Windthrow Assessment
p.	 Other (please specify):

31.	 What are the factors that determine when you acquire aerial photography? * (e.g. We acquire aerial photography 
once a year or as needed, which is pre-harvest and post-harvest)

32.	 What is the spatial resolution of your aerial photography? * (e.g. 2 metres)

Aerial Videography
Aerial videography refers to motion pictures which consists of three bands (red, green, blue) and is acquired from an aerial 
platform (e.g. plane, UAV).

33.	 Does your company use aerial videography? *
a.	 Yes
b.	 No

34.	 What are the reasons for not using aerial videography? *
a.	 Cost
b.	 No perceived benefits
c.	 Current staff lack of knowledge or training to use aerial videography
d.	 Was not aware of aerial videography
e.	 Other (please specify):

35.	 How is your aerial videography acquired? *
a.	 Unmanned Aerial Vehicle (drone)
b.	 Airplane
c.	 Helicopter
d.	 Other (please specify):

36.	 For what applications do you use your aerial videography? *
37.	 What are the factors that determine when you acquire aerial videography? * (e.g. We acquire aerial videography 

once a year or as needed, which is pre-harvest and post-harvest)

Multispectral Imagery
Multispectral imagery typically consists of four or more bands (red, green, blue, infrared, etc) and is commonly acquired from 
an airplane, UAV, or satellite.

38.	 Does your company use multispectral imagery? *
a.	 Yes
b.	 No

39.	 What are the reasons for not using multispectral imagery? *
a.	 Cost
b.	 No perceived benefit
c.	 Current staff lack of knowledge or training to use multispectral imagery
d.	 Was not aware of multispectral imagery
e.	 Other (please specify):
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40.	 How is your multispectral imagery acquired? *
a.	 Airplane
b.	 Satellite
c.	 Unmanned Aerial Vehicle (e.g. drone)
d.	 Helicopter
e.	 Other (please specify):

41.	 If you acquire satellite imagery, which sensor(s) do you use? *
a.	 Sentinel
b.	 RapidEye
c.	 Landsat
d.	 PlanetScope
e.	 Worldview
f.	 Other (please specify):

42.	 What products does your company derive from the multispectral imagery? *
a.	 True-colour composites (includes only red, green and blue bands (RGB))
b.	 False-colour composites (including RGB and other bands)
c.	 Vegetation Indices (e.g., Normalised Difference Vegetation Index (NDVI))
d.	 Other (please specify):

43.	 If you use vegetation indices, which do you use? *
a.	 Normalised Difference Vegetation Index (NDVI)
b.	 Soil Adjusted Vegetation Index (SAVI)
c.	 Burn Area Index (BAI)
d.	 Enhanced Vegetation Index (EVI)
e.	 Ratio Vegetation Index (RVI) also known as Simple Ration (SR)
f.	 Other (please specify):

44.	 For what applications do you use your multispectral imagery? *
a.	 Cutover Mapping
b.	 Fire Assessment
c.	 Forest Health Assessment
d.	 Harvest Planning
e.	 Hazards
f.	 Historic/Cultural Site Identification
g.	 Hydrological Features
h.	 Forest Inventory
i.	 Landslide/Soil Displacement Assessment
j.	 Road Mapping
k.	 Silvicultural Planning
l.	 Site Preparation
m.	 Species Identification
n.	 Stand/Forest Mapping
o.	 Windthrow Assessment
p.	 Other (please specify):

45.	 What are the factors that determine when you acquire multispectral imagery? * (e.g. We acquire multispectral 
imagery once a year or as needed, which is pre-harvest and post-harvest)

46.	 What is the spatial resolution of your multispectral imagery? * (e.g. 10 metres)

Hyperspectral Imagery
Hyperspectral imagery typically contains hundreds of bands spanning the visible and infrared wavelengths. Hyperspectral 
imagery is acquired from an aerial or satellite platform.

47.	 Does your company use hyperspectral imagery? *
a.	 Yes
b.	 No

48.	 What are the reasons for not using hyperspectral imagery? *
a.	 Cost
b.	 No perceived benefits
c.	 Current staff lack knowledge or training to use hyperspectral imagery
d.	 Was not aware of hyperspectral imagery
e.	 Other (please specify):

49.	 How is your hyperspectral imagery acquired? *
a.	 Unmanned Aerial Vehicle (e.g. drone)
b.	 Airplane
c.	 Helicopter
d.	 Satellite
e.	 Other (please specify):
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50.	 If you acquire hyperspectral imagery, which sensor(s) do you use? *
51.	 For what applications do you use your hyperspectral imagery? *

a.	 Cutover Mapping
b.	 Fire Assessment
c.	 Forest Health Assessment
d.	 Harvest Planning
e.	 Hazards
f.	 Historic/Cultural Site Identification
g.	 Hydrological Features
h.	 Forest Inventory
i.	 Landslide/Soil Displacement Assessment
j.	 Road Mapping
k.	 Silvicultural Planning
l.	 Site Preparation
m.	 Species Identification
n.	 Stand/Forest Mapping
o.	 Windthrow Assessment
p.	 Other (please specify):

52.	 What are the factors that determine when you acquire hyperspectral imagery? * (e.g. We acquire hyperspectral 
imagery once a year or as needed, which is pre-harvest and post-harvest)

53.	 What is the spatial resolution of your hyperspectral imagery? * (e.g. 3 metres)

LiDAR
LiDAR is an active remote sensing technique that stands for Light Detection and Ranging, it is also known as laser scanning. 

54.	 Does your company use LiDAR data? * (this includes LiDAR-derived products such as Digital Elevation Models)
a.	 Yes
b.	 No

55.	 What are the reasons for not using LiDAR? *
a.	 Cost
b.	 No perceived benefits
c.	 Current staff lack knowledge or training to use LiDAR data
d.	 Was not aware of LiDAR
e.	 Other (please specify):

56.	 How is your LiDAR data acquired? *
a.	 Unmanned Aerial Vehicle (e.g. drone)
b.	 Airplane
c.	 Helicopter
d.	 Satellite (e.g. Global Ecosystem Dynamics Investigation (GEDI))
e.	 Static Terrestrial platform (e.g. LiDAR sensor mounted on tripod)
f.	 Mobile Terrestrial platform (e.g. LiDAR sensor mounted on backpack or handheld)
g.	 Vehicular platform (e.g. LiDAR sensor mounted on ute)
h.	 Open data portal (e.g. Open Topography)
i.	 Other (please specify):

57.	 If you acquire LiDAR, which sensor(s) do you use?
a.	 DJI Zenmuse L1
b.	 Emesent Hovermap
c.	 Grenvalley LiAir series
d.	 Leica BLK series 
e.	 Riegl laser scanners
f.	 Other (please specify):

58.	 What are the factors that determine when you acquire LiDAR data? * (e.g. We acquire LiDAR data once a year or as 
needed, which is pre-harvest and post-harvest)

59.	 If you know, could you please provide the point density of the LiDAR data you acquire? * (e.g. 10 points/m²)
60.	 How do you process the raw point clouds (i.e. las or laz files)? *

a.	 We process the raw point clouds data in-house
b.	 We engage a third-party organisation (e.g. surveying company or consultants) to process point clouds data 

61.	 What do you do to process and analyse the raw point clouds? *
a.	 Filtering and cleaning point cloud
b.	 Classifying points to ground and non-ground points
c.	 Classifying points to detailed classes (e.g., water, high vegetation, low vegetation)
d.	 Generating surfaces (e.g., DEM, DSM, CHM)
e.	 Detecting and segmenting individual trees
f.	 3D model construction of individual trees
g.	 Deriving LiDAR metrics at plot-level

http://www.open
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h.	 Deriving LiDAR metrics at tree-level
i.	 Other (please specify):

62.	 What product(s) does your company derive from LiDAR data collection and processing? *
a.	 Canopy Height Model (CHM)
b.	 Digital Elevation Model (DEM)
c.	 Mean Top Height (MTH) estimates
d.	 Stem count or stocking
e.	 Stem volume estimates
f.	 Biomass or carbon estimates
g.	 Other (please specify):

63.	 If a DEM is derived, what spatial resolution is it?
64.	 For what applications do you use your LiDAR products? *

a.	 Cutover Mapping
b.	 Fire Assessment
c.	 Forest Health Assessment
d.	 Harvest Planning
e.	 Hazards
f.	 Historic/Cultural Site Identification
g.	 Hydrological Features
h.	 Forest Inventory
i.	 Landslide/Soil Displacement Assessment
j.	 Road Mapping
k.	 Silvicultural Planning
l.	 Site Preparation
m.	 Species Identification
n.	 Stand/Forest Mapping
o.	 Windthrow Assessment
p.	 Other (please specify):

Additional Remote Sensing Data
65.	 If you use any other types of remote sensing data for your forest management (e.g., radar), please specify the data 

type used, and the corresponding application.

Software
66.	 If you use imagery (including aerial photography, multispectral and/or hyperspectral) for your forest management, 

what software do you use to visualise and analyse each type of imagery? Please tick all the answers that apply.
Software Aerial Photography Multispectral Imagery Hyperspectral Imagery
ATLAS GeoMaster
ENVI
ERDAS IMAGINE
ESRI ArcGIS Desktop (e.g. 
ArcMap)
ESRI ArcGIS Pro
GDAL
Global Mapper
Google Earth Engine
GRASS GIS
Python
QGIS
R
Trimble eCognition

67.	 If your company uses any other software to visualise and analyse imagery, please list the software name, and the 
corresponding imagery.

68.	 If you use photogrammetry points, what software do you use to collect and process photogrammetry point clouds 
(creating point clouds from structure from motion)? Please tick all the answers that apply.

a.	 Agisoft Metashape
b.	 COLMAP
c.	 DJI Terra 
d.	 DroneDeploy
e.	 ESRI Drone2Map
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f.	 LiMapper
g.	 Pix4Dmapper
h.	 Other (please specify):

69.	 If you use point cloud data (including photogrammetry and LiDAR) for your forest management, what software do 
you use to collect and process point clouds? Please tick all the answers that apply.

Software Photogrammetry point cloud LiDAR point cloud
Cloudcompare
Computree
DJI Terra 
Fusion
LASTools
LiDAR360
Python
R - LidR package
R - other packages

70.	 If your company uses any other software to collect and process photogrammetry and/or LiDAR point clouds please 
list the software name, and the corresponding point cloud type (i.e. LiDAR or photogrammetry).

Artificial Intelligence
Artificial Intelligence (AI) is a technology that enables computers to perform tasks with human-like intelligence, such as 
analysing data, making decisions, and solving problems. It can include methods such as machine learning and deep learning.

71.	 Does your company use AI when working with geospatial data? *
a.	 Yes
b.	 No

72.	 What are the reasons for not using AI? *
a.	 Cost
b.	 No perceived benefits
c.	 Current staff lack knowledge or training to use AI models
d.	 Was not aware of AI models 
e.	 Other (please specify):

73.	 What AI models does your company use? * (e.g. Random Forest or Convolutional Neural Network)
74.	 What types of remote sensing data is used in AI models? *

a.	 Aerial Photography
b.	 Multispectral Imagery
c.	 Hyperspectral Imagery
d.	 LiDAR
e.	 Other (please specify):

75.	 For what applications do you use AI? *
a.	 Cutover Mapping
b.	 Fire Assessment
c.	 Forest Health Assessment
d.	 Harvest Planning
e.	 Hazards
f.	 Historic/Cultural Site Identification
g.	 Hydrological Features
h.	 Forest Inventory
i.	 Landslide/Soil Displacement Assessment
j.	 Road Mapping
k.	 Silvicultural Planning
l.	 Site Preparation
m.	 Species Identification
n.	 Stand/Forest Mapping
o.	 Windthrow Assessment
p.	 Other (please specify):

76.	 Thank you for completing the survey. Would you like to receive a copy of the final report?
a.	 Yes
b.	 No


