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Abstract

Background: Red needle cast (RNC), caused by Phytophthora pluvialis Reeser, W.L. Sutton & E.M. Hansen, is a significant 
foliar disease impacting Pinus radiata D.Don in New Zealand. First detected in 2005, the disease has now been observed in 
all regions of the country. In the most severe cases, defoliation of entire tree crowns can occur at a landscape scale. While 
some evidence of growth loss and productivity reduction has been reported, quantitative estimates of the effect of RNC on 
productivity are needed to inform disease management and mitigation decisions. This study aims to assess both short- and 
long-term losses in radial growth due to RNC.

Methods: We used tree cores to quantify yearly basal area increments at two plantations: a 32-year-old stand in Wharerata 
Forest, with documented history of outbreaks both severe and cyclic in nature, and a 26-year-old stand in Kinleith Forest, 
where 8 years of continuous disease severity monitoring has been conducted at the tree level. A Bayesian multilevel 
modelling framework was used to predict growth losses due to RNC at each site separately, accounting for yearly weather 
and outbreak severity.

Results: We predicted a 31% to 51.5% radial growth loss in the year following an RNC outbreak, with reduced growth 
detectable for 3 to 4 years after disease, amounting to up to 30.6% growth loss over the course of a single event. Recurring 
disease events every three to four years can lead to a 20% reduction in total radial area growth over the period encompassing 
the presence of the disease, with no evidence that each additional RNC event aggravates growth loss.

Conclusions: RNC causes significant growth loss in P. radiata, with the potential to severely reduce stand productivity over 
a rotation period. These results contribute valuable insights for forest managers in RNC-prone regions. The enablement of 
more accurate productivity forecasts and targeted mitigation efforts will also benefit from further research on the impact 
of RNC on other important tree characteristics such as wood density, and the interaction of disease presence and impact 
with climate.
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Introduction 
Red needle cast (RNC), a foliar disease of radiata pine 
(Pinus radiata D.Don) caused by Phytophthora pluvialis 
Reeser, W.L. Sutton & E.M. Hansen, and occasionally 
Phytophthora kernoivae Brasier, Beales & S.A. Kirk, can 
cause dramatic needle loss in New Zealand commercial 
forests. The disease was first observed in radiata pine 
forests in the Gisborne region on the east coast of New 
Zealand’s North Island in 2005 (Dick et al. 2014) and has 
now been reported in all regions of the country. RNC may 
impact tree growth and wood characteristics, however, 
its impact has not been fully assessed. Here, we aim to 
quantify the growth loss and recovery time associated 
with RNC in New Zealand radiata pine forests.

At the needle level, symptoms of RNC start as olive 
green-coloured lesions that turn khaki-coloured, 
spread along the needle while turning red/brown, 
before eventual needle senescence and premature loss. 
New needle growth in the following growing season is 
generally believed to not be affected. At the tree level, 
the disease affects mature needles of the lower crown 
and spreads towards the upper canopy. Symptoms 
appear in late autumn or winter depending on year and 
location (Dick et al. 2014). Outbreaks vary in severity 
across regions and years. Severe outbreaks can affect 
plantations at the regional scale and lead to defoliation of 
whole tree crowns, as observed on several occasions in 
the Gisborne region of the North Island (Watt et al. 2024; 
Fraser et al. 2025). In contrast to other foliar diseases 
primarily affecting younger trees in New Zealand such 
as Dothistroma needle blight caused by Dothistroma 
septosporum (Dorog.) M. Morelet, RNC affects trees at 
all ages from 4 years old to rotation age, with higher 
severity in trees over 10 years old (Dick et al. 2014). 
Anecdotally, an outbreak frequency of roughly three 
years has been observed over the past two decades in 
the most affected forests in the Gisborne region. Bearing 
in mind that the disease primarily impacts older foliage 
and that radiata pine needles generally have a 3-year 
lifecycle, this outbreak frequency could be at least 
partially explained by the time needed for a full tree 
crown to develop from new foliar growth. Concomitant 
with the seemingly cyclical behaviour of the disease in 
affected areas, extent and severity of RNC outbreaks can 
partially be predicted based on current year’s weather 
conditions, with outbreaks more likely to occur after wet 
and relatively cool summers (Watt et al. 2024).

There is widespread evidence of other conifer 
foliar diseases impacting tree growth in New Zealand 
commercial plantations. In juvenile radiata pine, 
Dothistroma needle blight causes minimal growth loss 
until approximately 25% of the foliage is infected. Beyond 
this threshold, growth loss increases proportionally 
with infection level up to 75%, at which point growth 
nearly halts. Radiata pine over 15 years old are rarely 
affected (Bulman et al. 2013). Cyclaneusma needle cast, 
caused by Cyclaneusma minus (Butin) DiCosmo, Peredo 
& Minter, affects radiata pine trees up to age 20 and can 
cause a volume increment loss of 60% at an 80% average 
severity score (Bulman 1993). Swiss needle cast, caused 
by Nothophaeocryptopus gaeumannii (T. Rohde) Videira, 

C. Nakash., U. Braun & Crous 2017, affects Douglas-fir 
plantations internationally, and its effect on growth in 
New Zealand has been quantified to a cumulative mean 
reduction of 25% for mean top height, 27% for basal 
area, and 32% for stem volume, with variations around 
these estimates in different regions (Kimberley et al. 
2011). 

As RNC leads to premature defoliation and can affect 
whole stands repeatedly throughout a rotation, it is 
highly likely that large-scale outbreaks have a negative 
effect on tree growth and, ultimately, stand productivity. 
The fact that it affects mature, final-crop trees makes 
it likely to cause larger absolute volume growth losses 
than other diseases that affect younger trees. It is 
therefore necessary to assess the effects of RNC on 
growth and other tree characteristics to predict losses 
and enable cost-benefit analyses of potential treatments 
and breeding efforts. The first quantification of the 
effect of RNC on tree growth suggested that a high-
severity disease event can lead to a 38% growth loss 
the following year, and a 16% growth loss over 3 years 
(Beets, unpublished data). 

As the disease has now been expressing in New 
Zealand for at least two decades, observations of RNC 
have accumulated and data is available to precisely 
quantify the effect of disease severity and frequency on 
radiata pine growth. Here, we focus on two case studies 
in the North Island of New Zealand to assess each of 
these aspects of the disease at different timescales and 
resolution, using tree cores to quantify yearly radial 
growth. In the first case study, we assess the short- and 
long-term effects of frequently occurring outbreaks over 
the rotation of a 32-year-old stand in Wharerata Forest 
in the Gisborne region. The second case study addresses 
a finer spatial and temporal scale to quantify the effect 
of tree-level severity of one RNC outbreak over 4 years 
in a mature stand located in Kinleith Forest (central 
North Island). The two sites associated with these case 
studies are subsequently referred to as “Wharerata” and 
“Kinleith”. 

Methods 

Study sites and sampling design

Wharerata
A radiata pine stand located at Maxwells Road (-38.90, 
177.83) in Wharerata was used to infer the effect of 
repeated RNC events on growth over the course of a 
rotation at the stand level. 

Wharerata is a coastal, high elevation (up to c. 600 m), 
steep land commercial forest south of Gisborne on the 
East coast of the North Island. The Maxwells Road site is 
situated on a flat area, at c. 530 m elevation, 6 km from 
the coast. The soils are a mix of well drained loam over 
sand, classified as Humose Orthic Podzols according to 
the New Zealand Soil Classification system (Hewitt 2010) 
and imperfectly drained silt, classified as Mottled Orthic 
Brown Soils (Landcare Research NZ 2019). Mean annual 
temperature is 11.7 degrees Celsius, mean total annual 



rainfall is 1599 mm. The trees were planted in 1990, and 
pruning and thinning activities were conducted in the 
stand prior to 2002. Stand density was 317 stems per 
hectare after the last thinning event. 

Although RNC symptoms have only been visually 
confirmed in this specific stand in 2011 (Beets, 
unpublished data), there is compelling evidence that  
RNC outbreaks affected the stand in 2005, 2008, 2011, 
2014, 2017, and 2021. RNC outbreaks were observed in 
the region for the first time in 2005 and again in 2008 
(Dick et al. 2014). The dramatic growth reductions 
observed in the tree ring series the year after these 
two years could be due to drought, but local yearly and 
seasonal climate records do not show lower than average 
rainfall for these years. Besides, data from additional 
tree coring at stands in the vicinity (not included in 
this analysis) do not show those dips, which suggest 
the cause of growth reduction acts at a finer spatial 
scale than climatic factors, typical of disease outbreaks. 
Dothistroma needle blight is the other common disease 
in the area and can also cause growth reductions, but by 
2005 the stand was over 15 years old, and therefore not 
prone to this disease which mostly affects stands under 
this age. In 2014, forest health monitoring activities 
performed in another forest stand at Maxwells Road 
positively identified an abundance of Phytophthora 
pluvialis on needle samples (Fraser et al. 2020). Finally, 
between 2015 and 2024 a stand opposite to one studied 
on Maxwells Road was monitored yearly for disease, and 
85% and 90% of monitored trees had RNC symptoms in 
2017 and 2021 respectively. The stand analysed here has 
been noted as the most frequently and severely affected 
by disease by local forest managers. As a result, RNC 
observations performed at the same site (2014, 2017, 
2021) or in the region (2005, 2008) together with dips 
in tree ring series the following year are a compelling 
argument to assume that an outbreak occurred at the 
stand in those years. We therefore identified a total of 6 
outbreaks following a 3-year cycle, apart from the 2021 
event which occurred 4 years after the 2017 event. 

Tree cores were collected from September to 
December 2022, 32 years after the stand was established. 
Four sampling plots were defined in the Maxwells 
Road stand in Wharerata, between 35 and 70 metres 
from the road, along a stretch of 350 metres. In each 
plot, at least 10 trees were selected for coring within a 
10-meter radius from the plot centre. Trees with trunk 
abnormalities were avoided. Selected trees were cored 
at about 50cm from the ground to avoid compromising 
wood quality and multiple cores on different sides of 
each tree were collected. The total number of trees from 
Wharerata used in the final analysis was 39.

Kinleith
To assess the effect of RNC severity on growth over one 
disease event at the tree level, a radiata pine stand in 
Kinleith (-38.22, 175.93) that was affected by RNC in 
2016 was selected. RNC outbreak history prior to 2016 
is not known at this site.

Kinleith is an inland, large contiguous radiata pine 
plantation, ranging 350-800 m elevation in the Central 

North Island of New Zealand. The site is situated in a flat 
area, at c. 420 m elevation. The soil is well drained silt, 
classified as Typic Orthic Allophanic Soils according to 
the New Zealand Soil Classification system (Hewitt 2010; 
Landcare Research NZ 2019). Mean annual temperature 
is 12.1 degrees Celsius, mean total annual rainfall is 
1667 mm. The trees were planted in 1995 (plot 4), and 
1996 (plots 1-3), with thinning occurring at year 6 (2001 
in plot 4 and 2002 in plots 1-3). Stand density was 355 
stems per hectare after thinning.

RNC severity scores for individual trees were obtained 
in November 2016 as the percentage of the unsuppressed 
crown with red colouration, in 5% intervals from 0 to 
100%. The stand was monitored and scored for disease 
in spring (September-October) each subsequent year 
until 2021. Four 20-tree plots with 2016 RNC scores 
available were selected for coring. Wood cores were 
sampled in November 2020 for plot 1 and 2, and May 
2021 for plot 3 and 4. This corresponds to 25-26 years 
after establishment. Selected trees were cored at breast 
height, and multiple cores on different sides of each tree 
were collected. The total number of trees from Kinleith 
used in the final analysis was 77.

Wood core processing and data extraction 
Cores were sanded down using fine grit sandpaper and 
oiled with orange oil or standard kitchen-bench wood oil 
so that the growth bands of the late-wood were distinct. 
The cores were then scanned in a high-resolution 
scanner and measured using the software GIMP  
(https://www.gimp.org/). Not all cores included the 
pith, mainly due to the large diameter of selected trees. 
In cases where the cores were offset from the pith, the 
following correction method was applied estimating 
the radius of the last visible ring (Figure 1). A circle was 
fitted through the two points of the last ring intersected 
by the wood core and the deviation from the pith  was 
measured from this circle. Basic trigonometry allowed 
the calculation of each corrected cumulative ring width 
from the pith. As the first visible ring from the pith may 
not be the actual first ring, the corrected measurement 
for the first visible ring of each core was not used in 
subsequent processing. Corrected ring widths were 
averaged over all available cores of each tree to obtain 
one ring-width series per tree. Basal area and basal area 
increment series were subsequently calculated from 
ring-width series. Analyses were restricted to the post-
2005 period (starting at stand age 15 at Wharerata and 
age 9-10 at Kinleith), to avoid the confounding effects of 
silvicultural activities.

Basal area growth modelling
The modelling objective was to assess the effect of stand-
level RNC presence/absence each year (Wharerata) 
and the effect of tree-level RNC severity (Kinleith) on 
radial growth in subsequent years. The Bayesian models 
developed here are ultimately used to predict and 
quantify yearly growth loss following disease, overall 
growth loss from each RNC event, and growth loss across 
a whole rotation in a stand experiencing a high-frequency 
RNC cycle. The output of a Bayesian statistical model is 
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a probability distribution that quantifies the uncertainty 
about the estimated quantities of interest, called the 
posterior distribution. The Bayesian framework was 
an advantageous choice in this exercise as it naturally 
accommodates the multilevel nature of the data where 
tree ring series represent longitudinal measurements on 
individual trees. Also, relevant results from our models 
required mathematically transforming estimated 
quantities, for which uncertainties can be defined by 
conducting the transformations on the whole posterior 
distribution and subsequently summarising the obtained 
posterior distribution for the quantity of interest into 
credible intervals. Obtaining estimates of interest and 
their uncertainty bounds relied on integration over 
individual (fixed) and group (random) effects. This is 
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naturally handled in a Bayesian framework that uses a 
Markov Chain Monte Carlo (MCMC) algorithm, where 
a sample for the posterior distribution is obtained, 
through averaging over variable values for each iteration 
of the posterior sample (fixed effects) or through Monte-
Carlo integration (random effects). 

All analyses and visualisation were performed using 
R (R Core Team, 2023) and statistical models were fitted 
using the brms package version 2.20.1 (Bürkner, 2017). 
This package uses Stan’s Hamiltonian Monte Carlo 
(HMC) algorithm which is an efficient type of MCMC 
(Stan Development Team 2023). Model convergence 
was assessed using visual inspection of traceplots of 
Hamiltonian Monte Carlo (HMC) chains and assessment 
of the Gelman-Rubin convergence criterion. Chain 
resolution was assessed using bulk and tail estimated 
sample sizes (ESS). HMC computation details and 
performance for each site’s final model are described 
in Table 1. Predictor selection was performed using the 
LOOIC criterion from Leave-one-out Cross-Validation 
approximated by Pareto-smoothed importance 
sampling (Vehtari, 2017). As the Bayesian paradigm 
does not support the implementation of statistical tests, 
we do not report any p-values or significance. Bayesian 
models directly estimate quantities of interest through 
a probability distribution. We summarised these 
distributions by their mean as well as 90% credible 
intervals which are defined as the interval between the 
5% and 95% percentiles of the posterior distribution. 
An alternative to the frequentist concept of significance 
would be to assess whether 90% credible interval 
overlap 0 (or the equivalent of a null hypothesis value). 
If there is no overlap, then one can say that there is less 
that 90% probability that the quantity of interest is the 
null value. 

Wharerata growth model
As we were unable to identify radiata pine stands 
unaffected by RNC at the Wharerata site, we lacked 
growth data from healthy stands corresponding to 
the study period and location to use as a reference. 
Therefore, we used a radial tree growth series derived 
from the 300 Index, called the 300 Index growth model, 
as an RNC-free reference for Wharerata plots. The 300 
Index is a measure of stand productivity, defined as 
the stem volume mean annual increment at age 30 
for a stand density of 300 stems ha-1 and standard 
silvicultural treatments (Kimberley et al. 2005). The 300 
Index growth model has been a part of the estimation 
process of the 300 Index (Kimberley et al. 2005). It is a 

FIGURE 1: Cumulative ring width correction method for 
cores deviating from the pith. This schematic corresponds 
to a tree stem section at coring height, showing tree rings 
and bark. The original ring width measurement “y” on 
the wood core (full light-brown segment) is corrected to 
an estimated distance to the pith “x” using the formula 
stated at the top, where “d” is obtained by a fitting a circle 
through the two points of the last ring intersected by 
the wood core. The dashed light-brown line represents 
the corrected wood-core position. The same process is 
applied to cumulative ring widths for all years from the 
pith to the bark. 

Model Number 
of HMC 
chains

HMC 
chain 
length

HMC 
warmup 

length

Size of 
final 

posterior 
sample

Maximum 
tree depth

Target 
acceptance 
probability

Maximum 
R

Minimum 
bulk ESS

Minimum 
tail ESS

Wharerata 4 9000 6000 1000 12 0.99 1.01 414 915
Kinleith 4 5000 4000 1000 10 0.8 1 2254 1421

TABLE 1: Hamiltonian Monte Carlo (HMC) parameters and chain diagnostics used in the final Kinleith and Wharerata 
models. R: Gelman-Rubin convergence criterion; ESS: estimated sample size.

̭

̭



nonlinear function of age, stocking density, silvicultural 
activities and site productivity. Once the 300 Index has 
been established for a site, the model can therefore 
be used to predict basal area for any stand age and 
stocking density. We extracted estimates of the 300 
Index at each plot location using a New Zealand–wide 
index map which relies on a database of 3,676 plots and 
kriging techniques involving terrain attributes (Watt et 
al. 2021). We then input each plot’s 300 index, initial 
stocking density and silvicultural activities into the 
300 Index growth model described in Kimberley et al. 
(2005) to create a plot-level 32-year reference growth 
series. As the model outputs basal area predictions for 
each year of growth at the stand level and takes into 
account tree mortality by decreasing the stand density 
in time, we derived an average individual tree basal area 
for each year of growth by dividing stand basal area by 
the estimated stand density, obtaining for any given year 
i and an average tree a value zi of basal area increment at 
the Wharerata site.

Basal area increment yij for each year i and each 
measured tree j at Wharerata was divided by the 
reference zi from the corresponding tree age. We define 
the random variable R where: Rij = yij / zi for a given tree 
j and year i and modelled the logarithm of this ratio 
using a Bayesian hierarchical linear model, with the 
variables described in Table 2 as predictors. The model 
with lowest LOOIC is described in the equations below 
and included as predictors the two first climate principal 
components (PC1 and PC2), RNC event number (E), and 
two binary variables, RNC1 and RNC2, stating whether 

there had been an RNC outbreak at each of the two 
previous years. As outbreaks occurred every three years 
for most of the study period, we lacked data to directly 
assess the effect of RNC at each year beyond 3 years of 
growth post-disease. Tree was added as a group-level 
covariate to account for the longitudinal nature of the 
data. Plot as a group-level variable was left out as it did 
not improve model LOOIC. The model is as follows:

log(Rij) ~ N(μij, σ2)
 

μij = α + αTj + βPC1PC1i + βPC2PC2i + βEEi + βRNC1RNC1i   
                      + βRNC2RNC2i

where α is the grand mean, αT the tree-level random 
effect with distribution αTj  ~ Normal(μT, σT

2), and all 
other terms corresponding to variables described in 
Table 2 and their associated β coefficients. Standard 
normal priors (truncated to positive values for 
standard deviation parameters σ and σT) were used 
for all parameters in the model. We define p0 as the 
obtained posterior distribution of expected values for 
observations, where:

p0 = p(log(R)|α, αT, βPC1, βPC2, βE, βRNC1, βRNC2)

The quantity of interest for prediction is the growth 
loss experienced by an average tree in the 3 years 
following each RNC outbreak, assuming average climate 
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Variable Variable Name Type Level Description Model

PC1, 
PC2, PC3

Climate principal 
components

continuous year Principal components from a PCA performed on 
ClimateAP monthly, seasonal, and annual variables 
(Wang et al. 2017) for the plot’s geographic location.

W, K

YSTD Standardised year 
of growth

continuous year Year, ranging from 2005 to 2022 at Wharerata and 
2005 to 2022 at Kinleith, scaled and centred.

W, K

E RNC event 
number

categorical year For a given year, takes the value corresponding to 
the most recent event. Six disease events occurred 
throughout the rotation. 

W

RNC1, 
RNC2

RNC year binary year States whether there had been an RNC outbreak 1 
or 2 years prior. For instance, for a given year, RNC1 
takes the value 1 if RNC was present the year prior, 0 
otherwise.

W

S1, S2, 
S3, S4

RNC severity 
scores for years 
1,2,3 and 4 prior

continuous tree*year Scores ranging from 0 to 100. This set of variables 
reflects both the number of years since the outbreak 
(variable index) and each tree’s severity (variable 
value). For instance, for a given tree and year, S2 
would record the RNC severity level experienced by 
that tree 2 years prior to that year.

K

TABLE 2: Explanatory variables used in the models. “Level” refers to the individual entities described by the variable, and 
“model” states whether the variable is used in the Wharerata model (W) or the Kinleith model (K), or both. The variable 
appears bold if it is included in the final Wharerata model and underlined if it is included in the final Kinleith model. 



conditions. We define the posterior for this quantity ppred, 
where:

	 ppred = p((R)|α, βE, βRNC1, βRNC2)

To obtain ppred from p0, we first calculate the growth loss 
experienced by an average tree in the 3 years following 
each RNC outbreak conditioning on observed climate 
conditions, by integrating over the random variable 
representing tree effects:

	 p1 = p(R|α, βPC1, βPC2, βE, βRNC1, βRNC2)

		  = ∫ep   dαT

To perform this integration on the MCMC sample of p0, 
we use a Monte-Carlo integration where the following 
process was iterated for each of the 1000 posterior 
iterations:

1.	 For each observation, calculate the “fixed” 
part of the predictor using parameter 
estimates from the corresponding 
posterior iteration

2.	 simulate a sample of 100 tree effects from 
αTj  ~ Normal(μT, σT

2)
3.	 calculate the expected predictor value for 

these 100 simulations
4.	 exponentiate the obtained value
5.	 average over the 100 values to obtain a 

unique value for the current posterior 
iteration.

Finally, to obtain ppred, we marginalised the posterior p1 
over climate effects by averaging all predictions with 
identical (E, RNC1, RNC2) values but different (PC1, PC2) 
values.

ppred = ∫p1 d(βPC1, βPC2)

The obtained posterior distribution ppred was summarised 
using means and 5% and 95% quantiles to obtain 90% 
credible intervals. 

Kinleith growth model
We define the random variable Y corresponding to the 
percentage of total area growth for each tree. We have 
Yij = yij / yj

tot where yij is the stem area increment for a 
given year i and measured tree j and yj

tot is the total basal 
area increment for tree j. The logarithm of this Y was 
modelled using a Bayesian hierarchical linear model, 
with the variables described in Table 2 as predictors. The 
model with lowest LOOIC is described in the equations 
below and included as predictors year of growth (YSTD), 
the three first climate principal components (PC1, PC2 
and PC3), and RNC severity scores for years 1,2,3 and 4 
prior to year i (S1-S4). Tree was added as a group-level 
covariate but plot was left out as it did not improve 
model LOOIC. The model is as follows:

	 log(Yij) ~ N(μij, σ2)

μij = α + αTj + βYSTDYSTDi + βPC1PC1i + βPC2PC2i + 
                       βPC3PC3i + βS1S1i + βS2S2i+ βS3S3i+ βS4S4i

where α is the grand mean, αT  is the tree-level random 
effect with distribution αj  ~ Normal(μT, σT

2), and all other 
terms fixed terms described in Table 2. Normal priors 
with mean 0 and standard deviation 0.5 (truncated to 
positive values for standard deviation parameters σ and 
σT) were used for all parameters in the model, apart from  
which had a normal prior with mean 1 and standard 
deviation 0.5. We define  as the obtained posterior 
distribution of observations, where:

	 p0 = p(log(Y)|α, αT, βYSTD, βPC1, βPC2, βPC3, βs1, βs2, βs3,  
	         βs4)

To quantify growth loss due to RNC, we first calculate the 
posterior for the expected relative growth experienced 
by an average tree in the 4 years following the 2016 RNC 
outbreak at three different 2016 severity scores (0%, 
50%, and 95%,). We define this posterior as , where:

p1 = p(Y|α, αT, βYSTD, βPC1, βPC2, βPC3, βs1, βs2, βs3, βs4)

		  = ∫ep   dαT

To calculate p1, we first calculate predictions from the 
fitted model for a simulated dataset of trees, for growth 
years 2016 to 2020 and combinations of S1-S4 variables 
mimicking no symptoms (0%), moderate severity (50%), 
and high severity (95%) in 2016, and no symptoms 
the following years. Similarly to the Wharerata model, 
we perform the integration over tree effects using the 
Monte-Carlo procedure described below, for each of the 
1000 posterior iterations of predictions.

1.	For each prediction calculate the “fixed” part of 
the predictor using parameter estimates from the 
corresponding posterior iteration

2.	simulate a sample of 100 tree effects from  
Normal(μT, σT

2)
3.	calculate the predictor value for these 100 

simulations
4.	exponentiate the obtained value
5.	average over the 100 values to obtain a unique value 

for the current posterior iteration.

We obtained a posterior prediction for relative growth 
for each combination of year (2016-2020) and 2016 
RNC severity (0%, 50%, 95%). Finally, to be able to 
isolate the effect of RNC and year post-disease from the 
effect of climate variables, for each growth year 2016-
2020, we standardised the posterior distribution for 
the medium and high severity by dividing each of their 
posterior iteration by the corresponding iteration from 
the prediction of 0% severity. 
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The obtained distribution of affected-to-healthy 
predicted growth proportion per year and RNC severity 
(50% and 95%) was summarised by extracting the 
mean, 5%, and 95% percentiles to obtain 90% credible 
intervals. 

Results

Observed growth compared to the 300 Index 
reference at Wharerata
We observed a wide variation in overall growth among 
sampled trees at Wharerata (Figure 2a). Out of 39 
trees, 35 exhibited lower overall growth than the 300 
Index growth reference over the rotation (Figure 2a). 
However, the observed yearly growth increment (Figure 
2b) was not consistently lower than the reference, with 
an apparent cyclic pattern showing an alternance of 
low growth years where most if not all trees grew less 
than the reference (e.g. 2009), and high growth years, 
where trees on average grew as much or more than the 
reference (e.g. 2017, 2021).

Inferred growth response to RNC at Wharerata forest
The final model related relative growth (on a logarithmic 
scale) to year, climate, and disease incidence. All HMC 
chains converged, with an appropriate posterior 
resolution (Table 1). The model revealed a major effect 
of disease on subsequent yearly growth over the 3 years 
following an outbreak. Figure 3 shows the summarised 
posterior distributions of the yearly radial growth 
relative to expectation from a reference, for each year 

up to three years after the 6 disease events, and after 
controlling for tree and climate effects. Predictions 
confirm that trees were growing as expected from the 
reference in 2005, the year of the first RNC event. The 
cyclic pattern of inferred RNC-related growth patterns 
matched the pattern observed in the raw data on 
Figure 2b, suggesting that RNC incidence was the most 
important driver of growth differences among years.
The necessary inclusion of RNC event number in the 
final model suggests that growth loss varied from one 
event to another, likely due to different levels of outbreak 
intensity. The inclusion of RNC event number as a factor 
in the model also allowed differentiation of growth 
patterns between years other than 1 or 2 years before 
an outbreak. For instance, 2005 (no prior outbreak) and 
other outbreak years (mainly 3 years after an outbreak) 
could be differentiated and therefore an indication 
of growth loss past 2 years after an outbreak could be 
gained without specifically creating predictors for those 
years.

Percent estimated growth loss due to RNC for each 
year following disease is shown in Table 3. At each RNC 
event, the trees on average grew up to 51.5% less than 
the reference the year after disease, up to 35.2% less 
than the reference two years after disease, and up to 9% 
less than the reference three years after disease. Only for 
year 2021 were growth patterns 4 years after disease 
able to be observed (outbreak 5) and the model did 
not detect any growth difference from the reference on 
average for that year, providing some evidence that trees 
might need a total of three to four years to recover from 
an RNC outbreak. The model also provides no evidence 
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FIGURE 2: a. Cumulative basal area growth over the rotation for 39 trees at Maxwells Road (Wharerata Forest) and for 
the 300 Index growth reference. The data used in the analysis starts at the vertical grey line (2005, age 15); b. Yearly 
basal area increments relative to the 300 Index growth reference for 39 trees at Maxwells Rd over the study period. The 
level corresponding to equal growth between observation and reference is depicted as a dashed black line.



that each additional RNC event aggravates growth loss.  
Outbreak 3 had the most damaging effect on growth, 
followed by outbreak 2 then 5. This suggests that 
successive disease events do not compound their effects 
over the long term. From Table 3, we estimated growth 
losses of 20.0% and 11.3% over the period of disease 
(2005-2022) and over the whole rotation (1990-2022), 
respectively.

Observed growth response to RNC severity at 
Kinleith
The Kinleith data only covers one main RNC event in 2016, 
but the collection of yearly RNC severity scores allowed 
the estimation of the effect of tree-level RNC severity 
on radial growth over 4 years. No outbreak occurred 
during the 2017-2021 period, although mild symptoms 
on some trees were observed and recorded. Figure 4 
shows observed basal area increment profiles of trees 
from 2007 as well as the distribution of RNC severity 
across all trees and plots on the year of the outbreak. 
Trees experiencing high RNC severity generally show 
a slower growth after 2016 than moderately affected 
trees. It is also worth noting the tendency of trees having 
high growth rates pre-infection showing lower levels of 
RNC severity. 

Inferred growth response to RNC severity at Kinleith
The final model predicted the log-transformed percent 
BAI growth of total BAI growth per tree. Predictors 

used were year of growth, climate, and RNC severity 
scores for each of 4 years prior to the year of growth. All 
HMC chains converged, with an appropriate posterior 
resolution (Table 1). Year of growth conditional on 
climatic conditions informs about age-related tree-
specific radial growth patterns (stand age was uniform 
across each location) and stand-level competition 
dynamics. By including this variable to the model we 
account for any linear trend with tree/stand age and, 
potentially, any annual linear trend not directly related 
to climate conditions. In our case, year and climate 
might have partially confounding effects as we observed 
an increasing temperature trend over the study period 
that translated into a visible PC1 trend (data not shown). 
We computed growth predictions (relative to total 
growth) for three chosen levels of 2016 RNC severity 
corresponding to extreme and mid-range observed 
values (0%, 50%, 95%). Results are displayed in Figure 
5. Growth loss estimates were inferred by computing 
the ratio of yearly growth proportions from each level 
to estimated growth proportions from the healthy 
level (0%), for each draw from the predictive posterior 
distribution. Summarised results are presented in Table 
3. RNC severity had a strong negative effect on growth in 
the two years following the outbreak. The highest RNC 
severity (95%) induced a 32.8 % reduction in growth 
compared to healthy trees the year following disease, 
and a moderate severity (50%) induced a 18.9% growth 
reduction. The effect of RNC severity was comparable 
the following year and then decreased to 23.6% (95% 
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FIGURE 3: Prediction of yearly basal area increments (BAI) for average climate conditions at Maxwells Rd (Wharerata). 
The orange line and bands represent the posterior mean and 90% credible intervals respectively. The blue line is the 300 
Index BAI growth reference. Years of RNC outbreaks are marked with vertical dashed lines.



severity) and 13.2% (50% severity) on year 3 (Table 
3). On year 4 after disease, predictions for healthy and 
severely affected trees still differed, with a growth loss 
around 15% and no overlap between 90% credible 
intervals (Figure 5). 

Discussion
We quantified yearly growth loss following disease at 
two sites, showing that a single high-severity disease 
event can lead to 30-50% growth loss for the year after 

expression. Yearly growth loss is observed for 3 to 4 
years after disease, showing that growth impacts remain 
for several years, despite crown recovery. Through a 
unique example of RNC infection cycle over a complete 
stand rotation at Wharerata, we showed that recurring 
disease events every three to four years can lead to a 
20% reduction in total radial growth over the period 
encompassing the presence of the disease, but also that 
the effect of each successive disease event does not seem 
to compound towards a higher impact or slower recovery 
over time. Through detailed individual tree scoring over 
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Site Outbreak 
No. 

Year 1 Year 2 Year 3 Year 4

Wharerata

1 34 [17.3,47.3] 19.9 [-1.2,36] 0.4 [-24.7,20.3]
2 43 [29.1,54.4] 28.2 [10.2,42.6] 3.2 [-21.8,23.6]
3 51.5 [39.3,61.3] 35.2 [18.6,48.4] 1 [-24.5,21.7]
4 36.9 [21.1,49.6] 14 [-7.9,31.7] 9 [-14.5,27.6]
5 38.7 [22.7,51.5] 27 [8.4,42.2] 9 [-14.5,27.6] -8.1 [-37,14.6]
6 31 [12.5,45.6]

average 39.2 24.9 4.5 -8.1

Site Outbreak 
severity

Year 1 Year 2 Year 3 Year 4

Kinleith
50% 18.9 [13.4,24.4] 20.5 [14.8,26] 13.2 [6.9,19.1] 8.2 [1.7,14.5]
95% 32.8 [25.1,40] 35.3 [27.3,42.5] 23.6 [14.6,32] 14.9 [4.8,24.2]

TABLE 3: Estimated percent growth loss for each year following an RNC outbreak at Wharerata and Kinleith, with 90% 
credible interval bounds. Negative values indicate growth gain relative to the healthy expectation.

FIGURE 4: a. Yearly basal area increments from 77 trees at Kinleith. Tree series were coloured from 2016 onwards 
according to their 2016 RNC severity score; b. Distribution of 2016 RNC scores across 77 trees at Kinleith, showing the 
colour scale for a.
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several years at Kinleith, we could also relate the severity 
level of RNC symptoms to radial growth at the tree level. 
Beets (unpublished data) describes a radial growth 
assessment of the Maxwells Road site at Wharerata after 
the 2008 and 2011 RNC outbreaks, using a lesser-affected 
nearby stand of different age as a healthy reference with 
no adjustment for climatic conditions. They estimated 
growth loss at 38% and 10% 1 year and 2 years after 
outbreak respectively. These estimates are lower than 
those obtained in the current study for the same disease 
events (Table 2, Wharerata outbreaks 2 and 3). The 
discrepancy may be due to the use of stands that were 
also affected by RNC as healthy growth reference in the 
earlier study, but also to the limited amount of data and 
growth-affecting variables available for the assessment 
at the time. This preliminary study nonetheless formed 
the basis for the long-term monitoring of the stands at 
the Wharerata site that the current study relies on and 
recorded some qualitative information of importance on 
historical disease occurrence and severity.

Despite the different data and models used at the 
Wharerata and Kinleith sites, we obtained initial growth 
loss results of similar order, although direct comparison 
of estimates is impossible as we lack details about the 
severity of RNC outbreaks at Wharerata. Previous 
observations from the 2013 study mentioned above 
have described 2008 and 2011 outbreaks at Wharerata 
as “severe”, suggesting growth loss estimates for these 
years should most likely be compared to the 95% severity 
estimates from Kinleith, in which case we observe 
a general agreement between the two case studies. 

However, the recovery trajectory past the first year is 
different between Kinleith and Wharerata outbreaks. 
Recovery seemed to take longer after the 2016 Kinleith 
outbreak compared to all six Wharerata outbreaks, with 
growth differences between affected trees and unaffected 
trees still observable 4 years after the disease event at 
Kinleith, whereas growth loss following outbreaks at 
Wharerata were barely detectable after 3 years. This 
could be explained by higher vigour at Wharerata than 
at Kinleith, making trees more resilient to disease. At 
equal age, the absolute stem area increments were on 
average higher at Wharerata than at Kinleith (Figure S1). 
However, care should be taken when giving biological 
interpretations to prediction differences, as only one 
disease event was observed at Kinleith, alongside a 
climatic trend over the study period, creating potential 
modelling limitations. We also observed that trees 
growing slower prior to disease tended to be more 
affected by disease at Kinleith. This dependence of 
disease severity on earlier growth rate might contribute 
to uncertainty over final growth loss estimates and 
to some sensitivity of estimates to modelling choices. 
On the other hand, our confidence in the results at the 
Wharerata site are strengthened by the observation of 
several RNC outbreaks. The lack of data past 3 years 
post-outbreak for 5 out of 6 RNC events is compensated 
by the estimation of hardly detectable growth loss three 
years after event and the positive growth ratio compared 
to reference 4 years after the 2017 outbreak. As all 
growth loss estimates at Wharerata are calculated based 
on ratios of observed growth data and simulated data 

FIGURE 5: Predicted proportion of tree-level total stem basal area grown at Kinleith for the 2016 RNC outbreak and 
four following years, for three levels of RNC severity. Lines and bands represent the posterior mean and 90% credible 
intervals respectively.
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from the 300 Index growth reference, trust in the results 
crucially depend on trust in the reference growth curve. 
The accordance of average growth in sampled trees with 
the reference for the pre-disease period (up to 2005) 
provides some evidence that the reference is accurate.

Diameter growth is one of the main quantifications 
of radiata pine productivity. As many productivity 
forecasting models are based on diameter growth, 
findings from the current study can be incorporated in 
productivity forecasting tools used by forest managers in 
regions where the disease is present to more accurately 
predict productivity. Paired with spatialised tools that 
are currently being developed to predict RNC occurrence 
and severity across a whole region on a yearly basis at 
a high resolution (Camarretta et al. 2024; Watt et al. 
2024), large-scale, year-to-year quantification of disease 
risks and their potential consequences will soon be 
available to forest managers. However, the geographic 
extent of available spatialised tools is currently limited 
to the East Coast region where the most extreme 
cases of disease occurrence and frequency, such as 
the Wharerata site studied here, have been observed. 
The disease levels observed at the Kinleith site may be 
more typical to average levels among all areas in New 
Zealand where RNC is present. More research needs 
to be conducted to precisely predict forthcoming RNC-
related growth loss at the landscape level across regions. 
While wet and relatively cool summers seem to favour 
RNC outbreaks on a year-to-year basis (Watt et al. 2024), 
longer-term disease incidence in New Zealand is likely 
shifting with climate change trends, and predictions 
will need to be expanded to newly affected regions. 
Moreover, the effect of yearly weather patterns on 
symptom severity and tree-level recovery is currently 
little known but likely complex, as hypothesised by 
Wakelin et al. (2018). There is anecdotal evidence of 
drought interacting with disease-related stress and 
slowing down recovery (Beets, unpublished data), but 
data is currently insufficient to confidently quantify the 
relationship between the compounding impact of RNC 
and abiotic stressors. Finally, mortality and interaction 
with root disease were not considered in this and 
previous studies of RNC impact in New Zealand. Field 
observations suggest that single defoliation events do 
not lead to mortality, but it is possible that repeated 
defoliation episodes in stressed trees can ultimately 
cause it. Mortality attributed to armillaria root rot (ARR) 
at Kinleith was significant in areas severely affected by 
Dothistroma needle blight (Sweet 1989). Shaw and Toes 
(1977) found that growth loss in trees affected by both 
Dothistroma needle blight and ARR was greater than 
the additive effects of each disease alone. It is plausible 
that interactions between RNC and ARR would result 
in similar effects. If so, effective productivity losses 
would be greater than currently estimated. Long-term 
plot or stand-level monitoring is required and currently 
underway through disease exclusion trials in the same 
areas as the location of this study and will provide more 
precise insight into potential RNC-related mortality.

It is possible that RNC also affects aspects of tree 
development other than radial growth such as height 

growth, tree form, and wood properties. Artificial 
defoliation experiments have shown limited effects 
of lower crown defoliation on radiata pine grafts on 
subsequent carbon uptake (Gomez-Gallego et al. 2020). 
Beets (unpublished data) reports a small reduction in 
latewood density in RNC-affected trees but more in-
depth studies need to be conducted to quantify such 
effects. In addition to the effect of RNC on radial growth 
loss, gaining knowledge on the effect of RNC on height 
growth would allow volume loss estimates to be made. 
However, studies on Cyclaneusma needle cast (Bulman 
& Gadgil 2001) and Dothistroma needle blight (Van der 
Pas 1981) showed height growth was not significantly 
affected by either disease. Knowing the effect of RNC on 
wood density and thus carbon storage loss and wood 
quality changes is likely of higher importance. This is 
especially true if the forestry industry is trying to shift its 
focus towards higher-quality wood products while also 
being used as a climate change remediation solution. In 
parallel to impact studies, research on mitigation tools 
such as relatively environmentally friendly treatment 
options is being conducted (Fraser et al. 2022). RNC 
mitigation in regions where RNC is prevalent can also 
be achieved through the breeding and deployment of 
more RNC-resistant genotypes of radiata pine, as RNC 
resistance is a moderately heritable trait in the New 
Zealand radiata pine breeding population (Dungey et al. 
2014; Graham et al. 2018; Ismael et al. 2020). All these 
advances in impact assessment, monitoring, forecasting 
and mitigation will allow cost-benefit assessments of 
disease management interventions as well as precise 
and confident optimisation of silvicultural activities in 
regions where RNC is present. 

Conclusions
By integrating extensive tree core collection and 
processing, long-term monitoring of disease expression, 
and publicly available environmental surfaces of climate 
profiles and site productivity in a carefully developed 
Bayesian statistical modelling framework, the present 
study reliably answers questions relating to several 
aspects of RNC effect on tree growth. Our findings 
highlight the threat of red needle cast to the forestry 
industry and are a first step towards cost-benefit 
analyses of disease management and mitigation.
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Details on climate variables used in the Wharerata and 
Kinleith models 

For each sampled plot location and each year of growth, annual, seasonal and monthly climate variables were extracted 
using the ClimateAP standalone software (Wang et al. 2017). Minima, maxima and averages for monthly and seasonal 
variables were used. These variables included temperature-related variables, precipitation variables, degree days 
below and above a set of threshold temperature, number of frost-free days, and moisture-related variables, totalling 
225 variables. A Principal Component Analysis (PCA) was conducted on variables after scaling and centring, to reduce 
dimensionality and collinearity of the dataset. 

The final number of principal components (PCs) to include in the model was decided as part of the model selection 
process at each site. The Kinleith models retained the 3 first PCs and the Wharerata model retained the two first PCs.

The variance explained and by each principal component for each PC (barplot) and the cumulative variance explained 
(dots and lines) for each model is shown in Figure S2. The shading corresponds to the PCs present in the final model.

FIGURE S2: Proportion of variance explained by each climate principal component (bars) and cumulative variance 
explained (dots and lines) at Wharerata and Kinleith. The shaded bars correspond to principal components included in 
the final statistical model at each site.
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