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Abstract

Background: Red needle cast (RNC), caused by Phytophthora pluvialis Reeser, W.L. Sutton & E.M. Hansen, is a significant
foliar disease impacting Pinus radiata D.Don in New Zealand. First detected in 2005, the disease has now been observed in
all regions of the country. In the most severe cases, defoliation of entire tree crowns can occur at a landscape scale. While
some evidence of growth loss and productivity reduction has been reported, quantitative estimates of the effect of RNC on
productivity are needed to inform disease management and mitigation decisions. This study aims to assess both short- and
long-term losses in radial growth due to RNC.

Methods: We used tree cores to quantify yearly basal area increments at two plantations: a 32-year-old stand in Wharerata
Forest, with documented history of outbreaks both severe and cyclic in nature, and a 26-year-old stand in Kinleith Forest,
where 8 years of continuous disease severity monitoring has been conducted at the tree level. A Bayesian multilevel
modelling framework was used to predict growth losses due to RNC at each site separately, accounting for yearly weather
and outbreak severity.

Results: We predicted a 31% to 51.5% radial growth loss in the year following an RNC outbreak, with reduced growth
detectable for 3 to 4 years after disease, amounting to up to 30.6% growth loss over the course of a single event. Recurring
disease events every three to four years canlead to a 20% reduction in total radial area growth over the period encompassing
the presence of the disease, with no evidence that each additional RNC event aggravates growth loss.

Conclusions: RNC causes significant growth loss in P. radiata, with the potential to severely reduce stand productivity over
arotation period. These results contribute valuable insights for forest managers in RNC-prone regions. The enablement of
more accurate productivity forecasts and targeted mitigation efforts will also benefit from further research on the impact
of RNC on other important tree characteristics such as wood density, and the interaction of disease presence and impact
with climate.
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Introduction

Red needle cast (RNC), a foliar disease of radiata pine
(Pinus radiata D.Don) caused by Phytophthora pluvialis
Reeser, W.L. Sutton & E.M. Hansen, and occasionally
Phytophthora kernoivae Brasier, Beales & S.A. Kirk, can
cause dramatic needle loss in New Zealand commercial
forests. The disease was first observed in radiata pine
forests in the Gisborne region on the east coast of New
Zealand’s North Island in 2005 (Dick et al. 2014) and has
now been reported in all regions of the country. RNC may
impact tree growth and wood characteristics, however,
its impact has not been fully assessed. Here, we aim to
quantify the growth loss and recovery time associated
with RNC in New Zealand radiata pine forests.

At the needle level, symptoms of RNC start as olive
green-coloured lesions that turn khaki-coloured,
spread along the needle while turning red/brown,
before eventual needle senescence and premature loss.
New needle growth in the following growing season is
generally believed to not be affected. At the tree level,
the disease affects mature needles of the lower crown
and spreads towards the upper canopy. Symptoms
appear in late autumn or winter depending on year and
location (Dick et al. 2014). Outbreaks vary in severity
across regions and years. Severe outbreaks can affect
plantations at the regional scale and lead to defoliation of
whole tree crowns, as observed on several occasions in
the Gisborne region of the North Island (Watt et al. 2024;
Fraser et al. 2025). In contrast to other foliar diseases
primarily affecting younger trees in New Zealand such
as Dothistroma needle blight caused by Dothistroma
septosporum (Dorog.) M. Morelet, RNC affects trees at
all ages from 4 years old to rotation age, with higher
severity in trees over 10 years old (Dick et al. 2014).
Anecdotally, an outbreak frequency of roughly three
years has been observed over the past two decades in
the most affected forests in the Gisborne region. Bearing
in mind that the disease primarily impacts older foliage
and that radiata pine needles generally have a 3-year
lifecycle, this outbreak frequency could be at least
partially explained by the time needed for a full tree
crown to develop from new foliar growth. Concomitant
with the seemingly cyclical behaviour of the disease in
affected areas, extent and severity of RNC outbreaks can
partially be predicted based on current year’s weather
conditions, with outbreaks more likely to occur after wet
and relatively cool summers (Watt et al. 2024).

There is widespread evidence of other conifer
foliar diseases impacting tree growth in New Zealand
commercial plantations. In juvenile radiata pine,
Dothistroma needle blight causes minimal growth loss
until approximately 25% of the foliage is infected. Beyond
this threshold, growth loss increases proportionally
with infection level up to 75%, at which point growth
nearly halts. Radiata pine over 15 years old are rarely
affected (Bulman et al. 2013). Cyclaneusma needle cast,
caused by Cyclaneusma minus (Butin) DiCosmo, Peredo
& Minter, affects radiata pine trees up to age 20 and can
cause a volume increment loss of 60% at an 80% average
severity score (Bulman 1993). Swiss needle cast, caused
by Nothophaeocryptopus gaeumannii (T. Rohde) Videira,
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C. Nakash., U. Braun & Crous 2017, affects Douglas-fir
plantations internationally, and its effect on growth in
New Zealand has been quantified to a cumulative mean
reduction of 25% for mean top height, 27% for basal
area, and 32% for stem volume, with variations around
these estimates in different regions (Kimberley et al.
2011).

As RNC leads to premature defoliation and can affect
whole stands repeatedly throughout a rotation, it is
highly likely that large-scale outbreaks have a negative
effect on tree growth and, ultimately, stand productivity.
The fact that it affects mature, final-crop trees makes
it likely to cause larger absolute volume growth losses
than other diseases that affect younger trees. It is
therefore necessary to assess the effects of RNC on
growth and other tree characteristics to predict losses
and enable cost-benefit analyses of potential treatments
and breeding efforts. The first quantification of the
effect of RNC on tree growth suggested that a high-
severity disease event can lead to a 38% growth loss
the following year, and a 16% growth loss over 3 years
(Beets, unpublished data).

As the disease has now been expressing in New
Zealand for at least two decades, observations of RNC
have accumulated and data is available to precisely
quantify the effect of disease severity and frequency on
radiata pine growth. Here, we focus on two case studies
in the North Island of New Zealand to assess each of
these aspects of the disease at different timescales and
resolution, using tree cores to quantify yearly radial
growth. In the first case study, we assess the short- and
long-term effects of frequently occurring outbreaks over
the rotation of a 32-year-old stand in Wharerata Forest
in the Gisborne region. The second case study addresses
a finer spatial and temporal scale to quantify the effect
of tree-level severity of one RNC outbreak over 4 years
in a mature stand located in Kinleith Forest (central
North Island). The two sites associated with these case
studies are subsequently referred to as “Wharerata” and
“Kinleith”.

Methods
Study sites and sampling design

Wharerata

A radiata pine stand located at Maxwells Road (-38.90,
177.83) in Wharerata was used to infer the effect of
repeated RNC events on growth over the course of a
rotation at the stand level.

Wharerata is a coastal, high elevation (up to c. 600 m),
steep land commercial forest south of Gisborne on the
East coast of the North Island. The Maxwells Road site is
situated on a flat area, at c. 530 m elevation, 6 km from
the coast. The soils are a mix of well drained loam over
sand, classified as Humose Orthic Podzols according to
the New Zealand Soil Classification system (Hewitt 2010)
and imperfectly drained silt, classified as Mottled Orthic
Brown Soils (Landcare Research NZ 2019). Mean annual
temperature is 11.7 degrees Celsius, mean total annual
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rainfall is 1599 mm. The trees were planted in 1990, and
pruning and thinning activities were conducted in the
stand prior to 2002. Stand density was 317 stems per
hectare after the last thinning event.

Although RNC symptoms have only been visually
confirmed in this specific stand in 2011 (Beets,
unpublished data), there is compelling evidence that
RNC outbreaks affected the stand in 2005, 2008, 2011,
2014, 2017, and 2021. RNC outbreaks were observed in
the region for the first time in 2005 and again in 2008
(Dick et al. 2014). The dramatic growth reductions
observed in the tree ring series the year after these
two years could be due to drought, but local yearly and
seasonal climate records do not show lower than average
rainfall for these years. Besides, data from additional
tree coring at stands in the vicinity (not included in
this analysis) do not show those dips, which suggest
the cause of growth reduction acts at a finer spatial
scale than climatic factors, typical of disease outbreaks.
Dothistroma needle blight is the other common disease
in the area and can also cause growth reductions, but by
2005 the stand was over 15 years old, and therefore not
prone to this disease which mostly affects stands under
this age. In 2014, forest health monitoring activities
performed in another forest stand at Maxwells Road
positively identified an abundance of Phytophthora
pluvialis on needle samples (Fraser et al. 2020). Finally,
between 2015 and 2024 a stand opposite to one studied
on Maxwells Road was monitored yearly for disease, and
85% and 90% of monitored trees had RNC symptoms in
2017 and 2021 respectively. The stand analysed here has
been noted as the most frequently and severely affected
by disease by local forest managers. As a result, RNC
observations performed at the same site (2014, 2017,
2021) or in the region (2005, 2008) together with dips
in tree ring series the following year are a compelling
argument to assume that an outbreak occurred at the
stand in those years. We therefore identified a total of 6
outbreaks following a 3-year cycle, apart from the 2021
event which occurred 4 years after the 2017 event.

Tree cores were collected from September to
December 2022, 32 years after the stand was established.
Four sampling plots were defined in the Maxwells
Road stand in Wharerata, between 35 and 70 metres
from the road, along a stretch of 350 metres. In each
plot, at least 10 trees were selected for coring within a
10-meter radius from the plot centre. Trees with trunk
abnormalities were avoided. Selected trees were cored
at about 50cm from the ground to avoid compromising
wood quality and multiple cores on different sides of
each tree were collected. The total number of trees from
Wharerata used in the final analysis was 39.

Kinleith
To assess the effect of RNC severity on growth over one
disease event at the tree level, a radiata pine stand in
Kinleith (-38.22, 175.93) that was affected by RNC in
2016 was selected. RNC outbreak history prior to 2016
is not known at this site.

Kinleith is an inland, large contiguous radiata pine
plantation, ranging 350-800 m elevation in the Central
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North Island of New Zealand. The site is situated in a flat
area, at c. 420 m elevation. The soil is well drained silt,
classified as Typic Orthic Allophanic Soils according to
the New Zealand Soil Classification system (Hewitt 2010;
Landcare Research NZ 2019). Mean annual temperature
is 12.1 degrees Celsius, mean total annual rainfall is
1667 mm. The trees were planted in 1995 (plot 4), and
1996 (plots 1-3), with thinning occurring at year 6 (2001
in plot 4 and 2002 in plots 1-3). Stand density was 355
stems per hectare after thinning.

RNC severity scores for individual trees were obtained
in November 2016 as the percentage of the unsuppressed
crown with red colouration, in 5% intervals from 0 to
100%. The stand was monitored and scored for disease
in spring (September-October) each subsequent year
until 2021. Four 20-tree plots with 2016 RNC scores
available were selected for coring. Wood cores were
sampled in November 2020 for plot 1 and 2, and May
2021 for plot 3 and 4. This corresponds to 25-26 years
after establishment. Selected trees were cored at breast
height, and multiple cores on different sides of each tree
were collected. The total number of trees from Kinleith
used in the final analysis was 77.

Wood core processing and data extraction

Cores were sanded down using fine grit sandpaper and
oiled with orange oil or standard kitchen-bench wood oil
so that the growth bands of the late-wood were distinct.
The cores were then scanned in a high-resolution
scanner and measured using the software GIMP
(https://www.gimp.org/). Not all cores included the
pith, mainly due to the large diameter of selected trees.
In cases where the cores were offset from the pith, the
following correction method was applied estimating
the radius of the last visible ring (Figure 1). A circle was
fitted through the two points of the last ring intersected
by the wood core and the deviation from the pith was
measured from this circle. Basic trigonometry allowed
the calculation of each corrected cumulative ring width
from the pith. As the first visible ring from the pith may
not be the actual first ring, the corrected measurement
for the first visible ring of each core was not used in
subsequent processing. Corrected ring widths were
averaged over all available cores of each tree to obtain
one ring-width series per tree. Basal area and basal area
increment series were subsequently calculated from
ring-width series. Analyses were restricted to the post-
2005 period (starting at stand age 15 at Wharerata and
age 9-10 at Kinleith), to avoid the confounding effects of
silvicultural activities.

Basal area growth modelling

The modelling objective was to assess the effect of stand-
level RNC presence/absence each year (Wharerata)
and the effect of tree-level RNC severity (Kinleith) on
radial growth in subsequent years. The Bayesian models
developed here are ultimately used to predict and
quantify yearly growth loss following disease, overall
growth loss from each RNC event, and growth loss across
awhole rotation in a stand experiencing a high-frequency
RNC cycle. The output of a Bayesian statistical model is
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FIGURE 1: Cumulative ring width correction method for
cores deviating from the pith. This schematic corresponds
to a tree stem section at coring height, showing tree rings
and bark. The original ring width measurement “y” on
the wood core (full light-brown segment) is corrected to
an estimated distance to the pith “xX” using the formula
stated at the top, where “d” is obtained by a fitting a circle
through the two points of the last ring intersected by
the wood core. The dashed light-brown line represents
the corrected wood-core position. The same process is
applied to cumulative ring widths for all years from the
pith to the bark.

a probability distribution that quantifies the uncertainty
about the estimated quantities of interest, called the
posterior distribution. The Bayesian framework was
an advantageous choice in this exercise as it naturally
accommodates the multilevel nature of the data where
tree ring series represent longitudinal measurements on
individual trees. Also, relevant results from our models
required mathematically transforming estimated
quantities, for which uncertainties can be defined by
conducting the transformations on the whole posterior
distribution and subsequently summarising the obtained
posterior distribution for the quantity of interest into
credible intervals. Obtaining estimates of interest and
their uncertainty bounds relied on integration over
individual (fixed) and group (random) effects. This is
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naturally handled in a Bayesian framework that uses a
Markov Chain Monte Carlo (MCMC) algorithm, where
a sample for the posterior distribution is obtained,
through averaging over variable values for each iteration
of the posterior sample (fixed effects) or through Monte-
Carlo integration (random effects).

All analyses and visualisation were performed using
R (R Core Team, 2023) and statistical models were fitted
using the brms package version 2.20.1 (Biirkner, 2017).
This package uses Stan’s Hamiltonian Monte Carlo
(HMC) algorithm which is an efficient type of MCMC
(Stan Development Team 2023). Model convergence
was assessed using visual inspection of traceplots of
Hamiltonian Monte Carlo (HMC) chains and assessment
of the Gelman-Rubin convergence criterion. Chain
resolution was assessed using bulk and tail estimated
sample sizes (ESS). HMC computation details and
performance for each site’s final model are described
in Table 1. Predictor selection was performed using the
LOOIC criterion from Leave-one-out Cross-Validation
approximated by  Pareto-smoothed importance
sampling (Vehtari, 2017). As the Bayesian paradigm
does not support the implementation of statistical tests,
we do not report any p-values or significance. Bayesian
models directly estimate quantities of interest through
a probability distribution. We summarised these
distributions by their mean as well as 90% credible
intervals which are defined as the interval between the
5% and 95% percentiles of the posterior distribution.
An alternative to the frequentist concept of significance
would be to assess whether 90% credible interval
overlap 0 (or the equivalent of a null hypothesis value).
If there is no overlap, then one can say that there is less
that 90% probability that the quantity of interest is the
null value.

Wharerata growth model

As we were unable to identify radiata pine stands
unaffected by RNC at the Wharerata site, we lacked
growth data from healthy stands corresponding to
the study period and location to use as a reference.
Therefore, we used a radial tree growth series derived
from the 300 Index, called the 300 Index growth model,
as an RNC-free reference for Wharerata plots. The 300
Index is a measure of stand productivity, defined as
the stem volume mean annual increment at age 30
for a stand density of 300 stems ha! and standard
silvicultural treatments (Kimberley et al. 2005). The 300
Index growth model has been a part of the estimation
process of the 300 Index (Kimberley et al. 2005). It is a

TABLE 1: Hamiltonian Monte Carlo (HMC) parameters and chain diagnostics used in the final Kinleith and Wharerata
models. R: Gelman-Rubin convergence criterion; ESS: estimated sample size.

Model Number HMC HMC Size of Maximum Target Maximum Minimum Minimum
of HMC chain warmup final tree depth acceptance R bulk ESS  tail ESS
chains length length posterior probability

sample
Wharerata 4 9000 6000 1000 12 0.99 1.01 414 915
Kinleith 4 5000 4000 1000 10 0.8 1 2254 1421
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nonlinear function of age, stocking density, silvicultural
activities and site productivity. Once the 300 Index has
been established for a site, the model can therefore
be used to predict basal area for any stand age and
stocking density. We extracted estimates of the 300
Index at each plot location using a New Zealand-wide
index map which relies on a database of 3,676 plots and
kriging techniques involving terrain attributes (Watt et
al. 2021). We then input each plot’s 300 index, initial
stocking density and silvicultural activities into the
300 Index growth model described in Kimberley et al.
(2005) to create a plot-level 32-year reference growth
series. As the model outputs basal area predictions for
each year of growth at the stand level and takes into
account tree mortality by decreasing the stand density
in time, we derived an average individual tree basal area
for each year of growth by dividing stand basal area by
the estimated stand density, obtaining for any given year
iand an average tree a value z, of basal area increment at
the Wharerata site.

Basal area increment y, for each year i and each
measured tree j at Wharerata was divided by the
reference z, from the corresponding tree age. We define
the random variable R where: R, = y_ / z for a given tree
j and year i and modelled the logarithm of this ratio
using a Bayesian hierarchical linear model, with the
variables described in Table 2 as predictors. The model
with lowest LOOIC is described in the equations below
and included as predictors the two first climate principal
components (PC, and PC,), RNC event number (E), and
two binary variables, RNC, and RNC,, stating whether
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there had been an RNC outbreak at each of the two
previous years. As outbreaks occurred every three years
for most of the study period, we lacked data to directly
assess the effect of RNC at each year beyond 3 years of
growth post-disease. Tree was added as a group-level
covariate to account for the longitudinal nature of the
data. Plot as a group-level variable was left out as it did
not improve model LOOIC. The model is as follows:

log(R,) ~ N(s,, 0"

MI] =a+t aT] + ﬁPClpcli + ﬁPCZPCZi + ﬂEEi + ﬁRNClRNcli
+B.. RNC

RNC2 2i

where a is the grand mean, a, the tree-level random
effect with distribution a;; ~ Normal(u,, 0,%), and all
other terms corresponding to variables described in
Table 2 and their associated 8 coefficients. Standard
normal priors (truncated to positive values for
standard deviation parameters ¢ and o,) were used
for all parameters in the model. We define p, as the
obtained posterior distribution of expected values for
observations, where:

P, p(log(R)|a, Xy ﬂpa' chz' BE’ BRNCl’ BRNCZ)

The quantity of interest for prediction is the growth
loss experienced by an average tree in the 3 years
following each RNC outbreak, assuming average climate

TABLE 2: Explanatory variables used in the models. “Level” refers to the individual entities described by the variable, and
“model” states whether the variable is used in the Wharerata model (W) or the Kinleith model (K), or both. The variable
appears bold if it is included in the final Wharerata model and underlined if it is included in the final Kinleith model.

Variable Variable Name Type Level

Description Model

PC1, Climate principal continuous year
PC2,PC3 components

YSTD Standardised year continuous year
of growth
E RNC event categorical year
number
RNC1, RNC year binary year
RNC2
S1,S2, RNC severity continuous tree*year

S3,54 scores for years
1,2,3 and 4 prior

Principal components from a PCA performed on W, K
ClimateAP monthly, seasonal, and annual variables
(Wang et al. 2017) for the plot’s geographic location.

Year, ranging from 2005 to 2022 at Wharerata and W, K
2005 to 2022 at Kinleith, scaled and centred.

For a given year, takes the value corresponding to w
the most recent event. Six disease events occurred
throughout the rotation.

States whether there had been an RNC outbreak 1 w
or 2 years prior. For instance, for a given year, RNC1

takes the value 1 if RNC was present the year prior, 0
otherwise.

Scores ranging from 0 to 100. This set of variables K
reflects both the number of years since the outbreak
(variable index) and each tree’s severity (variable

value). For instance, for a given tree and year, S2

would record the RNC severity level experienced by

that tree 2 years prior to that year.
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red”

conditions. We define the posterior for this quantity p,
where:

Pprea=P (R, ﬁE’ B RNC1 B RNCZ)

To obtain P pred from p , we first calculate the growth loss
experienced by an average tree in the 3 years following
each RNC outbreak conditioning on observed climate
conditions, by integrating over the random variable
representing tree effects:

b, = p(R|a, :Bpm' :chz' BE’ ﬂRNC‘l’ ﬁRNCZ)
= Iepo da,

To perform this integration on the MCMC sample of p,,
we use a Monte-Carlo integration where the following
process was iterated for each of the 1000 posterior
iterations:

1. For each observation, calculate the “fixed”
part of the predictor using parameter
estimates from the corresponding
posterior iteration

2. simulate a sample of 100 tree effects from
a,; ~ Normal(u,, 0.2

3. calculate the expected predictor value for
these 100 simulations

4. exponentiate the obtained value

5. average over the 100 values to obtain a
unique value for the current posterior
iteration.

Finally, to obtain Pprear WE marginalised the posterior p,
over climate effects by averaging all predictions with
identical (E, RNC1, RNC2) values but different (PC1, PC2)
values.

Pprea = -[pl d(ﬂPCI’ ﬁPCZ)

The obtained posterior distribution D preg WAS summarised
using means and 5% and 95% quantiles to obtain 90%
credible intervals.

Kinleith growth model

We define the random variable Y corresponding to the
percentage of total area growth for each tree. We have
Y, =y, /y/ where y, is the stem area increment for a
given year i and measured tree j and yiis the total basal
area increment for tree j. The logarithm of this ¥ was
modelled using a Bayesian hierarchical linear model,
with the variables described in Table 2 as predictors. The
model with lowest LOOIC is described in the equations
below and included as predictors year of growth (YSTD),
the three first climate principal components (PC,, PC,
and PC3), and RNC severity scores for years 1,2,3 and 4
prior to year i (S1-S4). Tree was added as a group-level
covariate but plot was left out as it did not improve
model LOOIC. The model is as follows:
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My =@t ay + ﬁYSTDYSTDi + ﬁPClpcli + BPQPCZI' +
ﬁPC3PC3i + ﬂmsu + ﬂ52521+ 'Bs3s3i+ ﬂS4S4i

where «a is the grand mean, @, is the tree-level random
effect with distribution a ~ Normal(u,, O'TZ), and all other
terms fixed terms described in Table 2. Normal priors
with mean 0 and standard deviation 0.5 (truncated to
positive values for standard deviation parameters o and
o0,) were used for all parameters in the model, apart from
which had a normal prior with mean 1 and standard
deviation 0.5. We define as the obtained posterior
distribution of observations, where:

py= p(log(V]a, Ap :Bysm ﬂpm' ﬁpcz' ﬂpcs' ﬁsl’ ﬁsZ’ 1353'
B.)

To quantify growth loss due to RNC, we first calculate the
posterior for the expected relative growth experienced
by an average tree in the 4 years following the 2016 RNC
outbreak at three different 2016 severity scores (0%,
50%, and 95%,). We define this posterior as , where:

p1=p(yla' aT’ ﬁYSTD’ ﬁPCI’ ﬁPCZ’ ﬁPC3’ ﬁsl' BSZ' ﬁs3’ ﬁs‘l-)

= Iepo da,

To calculate p,, we first calculate predictions from the
fitted model for a simulated dataset of trees, for growth
years 2016 to 2020 and combinations of S1-S4 variables
mimicking no symptoms (0%), moderate severity (50%),
and high severity (95%) in 2016, and no symptoms
the following years. Similarly to the Wharerata model,
we perform the integration over tree effects using the
Monte-Carlo procedure described below, for each of the
1000 posterior iterations of predictions.

1.For each prediction calculate the “fixed” part of
the predictor using parameter estimates from the
corresponding posterior iteration

2.simulate a sample of 100 tree effects from
Normal(u,, 0.?)

3.calculate the predictor value for these 100
simulations

4. exponentiate the obtained value

5.average over the 100 values to obtain a unique value
for the current posterior iteration.

We obtained a posterior prediction for relative growth
for each combination of year (2016-2020) and 2016
RNC severity (0%, 50%, 95%). Finally, to be able to
isolate the effect of RNC and year post-disease from the
effect of climate variables, for each growth year 2016-
2020, we standardised the posterior distribution for
the medium and high severity by dividing each of their
posterior iteration by the corresponding iteration from
the prediction of 0% severity.
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The obtained distribution of affected-to-healthy
predicted growth proportion per year and RNC severity
(50% and 95%) was summarised by extracting the
mean, 5%, and 95% percentiles to obtain 90% credible
intervals.

Results

Observed growth compared to the 300 Index
reference at Wharerata

We observed a wide variation in overall growth among
sampled trees at Wharerata (Figure 2a). Out of 39
trees, 35 exhibited lower overall growth than the 300
Index growth reference over the rotation (Figure 2a).
However, the observed yearly growth increment (Figure
2b) was not consistently lower than the reference, with
an apparent cyclic pattern showing an alternance of
low growth years where most if not all trees grew less
than the reference (e.g. 2009), and high growth years,
where trees on average grew as much or more than the
reference (e.g. 2017, 2021).

Inferred growth response to RNC at Wharerata forest
The final model related relative growth (on a logarithmic
scale) to year, climate, and disease incidence. All HMC
chains converged, with an appropriate posterior
resolution (Table 1). The model revealed a major effect
of disease on subsequent yearly growth over the 3 years
following an outbreak. Figure 3 shows the summarised
posterior distributions of the yearly radial growth
relative to expectation from a reference, for each year

Type observations — reference
0.31 7
7
< /
£ /
© 0.2 /
Q /
@©
S %
S /
m 1A
7/
0.04 —4%

0 5 10 15 20
Age (years)

25 30

Relative BAI
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up to three years after the 6 disease events, and after
controlling for tree and climate effects. Predictions
confirm that trees were growing as expected from the
reference in 2005, the year of the first RNC event. The
cyclic pattern of inferred RNC-related growth patterns
matched the pattern observed in the raw data on
Figure 2b, suggesting that RNC incidence was the most
important driver of growth differences among years.
The necessary inclusion of RNC event number in the
final model suggests that growth loss varied from one
event to another, likely due to different levels of outbreak
intensity. The inclusion of RNC event number as a factor
in the model also allowed differentiation of growth
patterns between years other than 1 or 2 years before
an outbreak. For instance, 2005 (no prior outbreak) and
other outbreak years (mainly 3 years after an outbreak)
could be differentiated and therefore an indication
of growth loss past 2 years after an outbreak could be
gained without specifically creating predictors for those
years.

Percent estimated growth loss due to RNC for each
year following disease is shown in Table 3. At each RNC
event, the trees on average grew up to 51.5% less than
the reference the year after disease, up to 35.2% less
than the reference two years after disease, and up to 9%
less than the reference three years after disease. Only for
year 2021 were growth patterns 4 years after disease
able to be observed (outbreak 5) and the model did
not detect any growth difference from the reference on
average for that year, providing some evidence that trees
might need a total of three to four years to recover from
an RNC outbreak. The model also provides no evidence

3-
2_
1 EERN \VAVAy 2\ \ W 178/, \\I] {88, s SENWIV A\ 4[]/ MY\ \ .
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FIGURE 2: a. Cumulative basal area growth over the rotation for 39 trees at Maxwells Road (Wharerata Forest) and for
the 300 Index growth reference. The data used in the analysis starts at the vertical grey line (2005, age 15); b. Yearly
basal area increments relative to the 300 Index growth reference for 39 trees at Maxwells Rd over the study period. The
level corresponding to equal growth between observation and reference is depicted as a dashed black line.
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FIGURE 3: Prediction of yearly basal area increments (BAI) for average climate conditions at Maxwells Rd (Wharerata).
The orange line and bands represent the posterior mean and 90% credible intervals respectively. The blue line is the 300
Index BAI growth reference. Years of RNC outbreaks are marked with vertical dashed lines.

that each additional RNC event aggravates growth loss.
Outbreak 3 had the most damaging effect on growth,
followed by outbreak 2 then 5. This suggests that
successive disease events do not compound their effects
over the long term. From Table 3, we estimated growth
losses of 20.0% and 11.3% over the period of disease
(2005-2022) and over the whole rotation (1990-2022),

respectively.

Observed growth response to RNC severity at
Kinleith

TheKinleith data only covers one main RNC eventin 2016,
but the collection of yearly RNC severity scores allowed
the estimation of the effect of tree-level RNC severity
on radial growth over 4 years. No outbreak occurred
during the 2017-2021 period, although mild symptoms
on some trees were observed and recorded. Figure 4
shows observed basal area increment profiles of trees
from 2007 as well as the distribution of RNC severity
across all trees and plots on the year of the outbreak.
Trees experiencing high RNC severity generally show
a slower growth after 2016 than moderately affected
trees. It is also worth noting the tendency of trees having
high growth rates pre-infection showing lower levels of
RNC severity.

Inferred growth response to RNC severity at Kinleith
The final model predicted the log-transformed percent
BAI growth of total BAI growth per tree. Predictors

used were year of growth, climate, and RNC severity
scores for each of 4 years prior to the year of growth. All
HMC chains converged, with an appropriate posterior
resolution (Table 1). Year of growth conditional on
climatic conditions informs about age-related tree-
specific radial growth patterns (stand age was uniform
across each location) and stand-level competition
dynamics. By including this variable to the model we
account for any linear trend with tree/stand age and,
potentially, any annual linear trend not directly related
to climate conditions. In our case, year and climate
might have partially confounding effects as we observed
an increasing temperature trend over the study period
that translated into a visible PC1 trend (data not shown).
We computed growth predictions (relative to total
growth) for three chosen levels of 2016 RNC severity
corresponding to extreme and mid-range observed
values (0%, 50%, 95%). Results are displayed in Figure
5. Growth loss estimates were inferred by computing
the ratio of yearly growth proportions from each level
to estimated growth proportions from the healthy
level (0%), for each draw from the predictive posterior
distribution. Summarised results are presented in Table
3. RNC severity had a strong negative effect on growth in
the two years following the outbreak. The highest RNC
severity (95%) induced a 32.8 % reduction in growth
compared to healthy trees the year following disease,
and a moderate severity (50%) induced a 18.9% growth
reduction. The effect of RNC severity was comparable
the following year and then decreased to 23.6% (95%
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TABLE 3: Estimated percent growth loss for each year following an RNC outbreak at Wharerata and Kinleith, with 90%
credible interval bounds. Negative values indicate growth gain relative to the healthy expectation.

Site Outbreak Year 1 Year 2 Year 3 Year 4
No.
1 34[17.3,47.3] 19.9 [-1.2,36] 0.4 [-24.7,20.3]
2 43[29.1,54.4]  28.2[10.2,42.6] 3.2 [-21.8,23.6]
3 51.5[39.3,61.3]  35.2[18.6,48.4] 1[-24.5,21.7]
Wharerata
4 36.9 [21.1,49.6] 14 [-7.9,31.7] 9[-14.5,27.6]
5 38.7 [22.7,51.5] 27 [8.4,42.2] 9 [-14.5,27.6] -8.1 [-37,14.6]
6 31[12.5,45.6]
average 39.2 249 4.5 -8.1
Site Outbreak Year 1 Year 3 Year 4
severity
Kinleith 50% 18.9 [13.4,24.4] 20.5[14.8,26] 13.2[6.9,19.1] 8.2 [1.7,14.5]
inlelt 95% 32.8[25.1,40]  35.3[27.3,42.5] 23.6 [14.6,32] 14.9 [4.8,24.2]

severity) and 13.2% (50% severity) on year 3 (Table
3). On year 4 after disease, predictions for healthy and
severely affected trees still differed, with a growth loss
around 15% and no overlap between 90% credible
intervals (Figure 5).

Discussion

We quantified yearly growth loss following disease at
two sites, showing that a single high-severity disease
event can lead to 30-50% growth loss for the year after

expression. Yearly growth loss is observed for 3 to 4
years after disease, showing that growth impacts remain
for several years, despite crown recovery. Through a
unique example of RNC infection cycle over a complete
stand rotation at Wharerata, we showed that recurring
disease events every three to four years can lead to a
20% reduction in total radial growth over the period
encompassing the presence of the disease, but also that
the effect of each successive disease event does not seem
to compound towards a higher impact or slower recovery
over time. Through detailed individual tree scoring over

a. ] b.
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FIGURE 4: a. Yearly basal area increments from 77 trees at Kinleith. Tree series were coloured from 2016 onwards
according to their 2016 RNC severity score; b. Distribution of 2016 RNC scores across 77 trees at Kinleith, showing the

colour scale for a.
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FIGURE 5: Predicted proportion of tree-level total stem basal area grown at Kinleith for the 2016 RNC outbreak and
four following years, for three levels of RNC severity. Lines and bands represent the posterior mean and 90% credible

intervals respectively.

several years at Kinleith, we could also relate the severity
level of RNC symptoms to radial growth at the tree level.
Beets (unpublished data) describes a radial growth
assessment of the Maxwells Road site at Wharerata after
the 2008 and 2011 RNC outbreaks, using alesser-affected
nearby stand of different age as a healthy reference with
no adjustment for climatic conditions. They estimated
growth loss at 38% and 10% 1 year and 2 years after
outbreak respectively. These estimates are lower than
those obtained in the current study for the same disease
events (Table 2, Wharerata outbreaks 2 and 3). The
discrepancy may be due to the use of stands that were
also affected by RNC as healthy growth reference in the
earlier study, but also to the limited amount of data and
growth-affecting variables available for the assessment
at the time. This preliminary study nonetheless formed
the basis for the long-term monitoring of the stands at
the Wharerata site that the current study relies on and
recorded some qualitative information of importance on
historical disease occurrence and severity.

Despite the different data and models used at the
Wharerata and Kinleith sites, we obtained initial growth
loss results of similar order, although direct comparison
of estimates is impossible as we lack details about the
severity of RNC outbreaks at Wharerata. Previous
observations from the 2013 study mentioned above
have described 2008 and 2011 outbreaks at Wharerata
as “severe”, suggesting growth loss estimates for these
years should mostlikely be compared to the 95% severity
estimates from Kinleith, in which case we observe
a general agreement between the two case studies.

However, the recovery trajectory past the first year is
different between Kinleith and Wharerata outbreaks.
Recovery seemed to take longer after the 2016 Kinleith
outbreak compared to all six Wharerata outbreaks, with
growth differences between affected trees and unaffected
trees still observable 4 years after the disease event at
Kinleith, whereas growth loss following outbreaks at
Wharerata were barely detectable after 3 years. This
could be explained by higher vigour at Wharerata than
at Kinleith, making trees more resilient to disease. At
equal age, the absolute stem area increments were on
average higher at Wharerata than at Kinleith (Figure S1).
However, care should be taken when giving biological
interpretations to prediction differences, as only one
disease event was observed at Kinleith, alongside a
climatic trend over the study period, creating potential
modelling limitations. We also observed that trees
growing slower prior to disease tended to be more
affected by disease at Kinleith. This dependence of
disease severity on earlier growth rate might contribute
to uncertainty over final growth loss estimates and
to some sensitivity of estimates to modelling choices.
On the other hand, our confidence in the results at the
Wharerata site are strengthened by the observation of
several RNC outbreaks. The lack of data past 3 years
post-outbreak for 5 out of 6 RNC events is compensated
by the estimation of hardly detectable growth loss three
years after event and the positive growth ratio compared
to reference 4 years after the 2017 outbreak. As all
growth loss estimates at Wharerata are calculated based
on ratios of observed growth data and simulated data
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from the 300 Index growth reference, trust in the results
crucially depend on trust in the reference growth curve.
The accordance of average growth in sampled trees with
the reference for the pre-disease period (up to 2005)
provides some evidence that the reference is accurate.

Diameter growth is one of the main quantifications
of radiata pine productivity. As many productivity
forecasting models are based on diameter growth,
findings from the current study can be incorporated in
productivity forecasting tools used by forest managers in
regions where the disease is present to more accurately
predict productivity. Paired with spatialised tools that
are currently being developed to predict RNC occurrence
and severity across a whole region on a yearly basis at
a high resolution (Camarretta et al. 2024; Watt et al.
2024), large-scale, year-to-year quantification of disease
risks and their potential consequences will soon be
available to forest managers. However, the geographic
extent of available spatialised tools is currently limited
to the East Coast region where the most extreme
cases of disease occurrence and frequency, such as
the Wharerata site studied here, have been observed.
The disease levels observed at the Kinleith site may be
more typical to average levels among all areas in New
Zealand where RNC is present. More research needs
to be conducted to precisely predict forthcoming RNC-
related growth loss at the landscape level across regions.
While wet and relatively cool summers seem to favour
RNC outbreaks on a year-to-year basis (Watt et al. 2024),
longer-term disease incidence in New Zealand is likely
shifting with climate change trends, and predictions
will need to be expanded to newly affected regions.
Moreover, the effect of yearly weather patterns on
symptom severity and tree-level recovery is currently
little known but likely complex, as hypothesised by
Wakelin et al. (2018). There is anecdotal evidence of
drought interacting with disease-related stress and
slowing down recovery (Beets, unpublished data), but
data is currently insufficient to confidently quantify the
relationship between the compounding impact of RNC
and abiotic stressors. Finally, mortality and interaction
with root disease were not considered in this and
previous studies of RNC impact in New Zealand. Field
observations suggest that single defoliation events do
not lead to mortality, but it is possible that repeated
defoliation episodes in stressed trees can ultimately
cause it. Mortality attributed to armillaria root rot (ARR)
at Kinleith was significant in areas severely affected by
Dothistroma needle blight (Sweet 1989). Shaw and Toes
(1977) found that growth loss in trees affected by both
Dothistroma needle blight and ARR was greater than
the additive effects of each disease alone. It is plausible
that interactions between RNC and ARR would result
in similar effects. If so, effective productivity losses
would be greater than currently estimated. Long-term
plot or stand-level monitoring is required and currently
underway through disease exclusion trials in the same
areas as the location of this study and will provide more
precise insight into potential RNC-related mortality.

It is possible that RNC also affects aspects of tree
development other than radial growth such as height

Page 11

growth, tree form, and wood properties. Artificial
defoliation experiments have shown limited effects
of lower crown defoliation on radiata pine grafts on
subsequent carbon uptake (Gomez-Gallego et al. 2020).
Beets (unpublished data) reports a small reduction in
latewood density in RNC-affected trees but more in-
depth studies need to be conducted to quantify such
effects. In addition to the effect of RNC on radial growth
loss, gaining knowledge on the effect of RNC on height
growth would allow volume loss estimates to be made.
However, studies on Cyclaneusma needle cast (Bulman
& Gadgil 2001) and Dothistroma needle blight (Van der
Pas 1981) showed height growth was not significantly
affected by either disease. Knowing the effect of RNC on
wood density and thus carbon storage loss and wood
quality changes is likely of higher importance. This is
especially true if the forestry industry is trying to shift its
focus towards higher-quality wood products while also
being used as a climate change remediation solution. In
parallel to impact studies, research on mitigation tools
such as relatively environmentally friendly treatment
options is being conducted (Fraser et al. 2022). RNC
mitigation in regions where RNC is prevalent can also
be achieved through the breeding and deployment of
more RNC-resistant genotypes of radiata pine, as RNC
resistance is a moderately heritable trait in the New
Zealand radiata pine breeding population (Dungey et al.
2014; Graham et al. 2018; Ismael et al. 2020). All these
advances in impact assessment, monitoring, forecasting
and mitigation will allow cost-benefit assessments of
disease management interventions as well as precise
and confident optimisation of silvicultural activities in
regions where RNC is present.

Conclusions

By integrating extensive tree core collection and
processing, long-term monitoring of disease expression,
and publicly available environmental surfaces of climate
profiles and site productivity in a carefully developed
Bayesian statistical modelling framework, the present
study reliably answers questions relating to several
aspects of RNC effect on tree growth. Our findings
highlight the threat of red needle cast to the forestry
industry and are a first step towards cost-benefit
analyses of disease management and mitigation.
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Details on climate variables used in the Wharerata and
Kinleith models

For each sampled plot location and each year of growth, annual, seasonal and monthly climate variables were extracted
using the ClimateAP standalone software (Wang et al. 2017). Minima, maxima and averages for monthly and seasonal
variables were used. These variables included temperature-related variables, precipitation variables, degree days
below and above a set of threshold temperature, number of frost-free days, and moisture-related variables, totalling
225 variables. A Principal Component Analysis (PCA) was conducted on variables after scaling and centring, to reduce
dimensionality and collinearity of the dataset.

The final number of principal components (PCs) to include in the model was decided as part of the model selection
process at each site. The Kinleith models retained the 3 first PCs and the Wharerata model retained the two first PCs.

The variance explained and by each principal component for each PC (barplot) and the cumulative variance explained
(dots and lines) for each model is shown in Figure S2. The shading corresponds to the PCs present in the final model.

Wharerata Kinleith
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FIGURE S2: Proportion of variance explained by each climate principal component (bars) and cumulative variance
explained (dots and lines) at Wharerata and Kinleith. The shaded bars correspond to principal components included in
the final statistical model at each site.
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