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Abstract

Background: Global canopy height models are becoming prolific yet require evaluation across New Zealand’s diverse 
vegetation types to assess their accuracy and applicability. Accurate measurement of canopy height is crucial for estimating 
above-ground woody biomass, which is essential for modelling carbon emissions and sequestration in the context of 
climate change. These models generally rely on remote sensing data and machine learning techniques, with Light Detection 
and Ranging (LiDAR) technology commonly employed for precise measurement. 

Methods: This study validated the three latest global canopy height models, each provided at a different resolution: 
30-metre, 10-metre, and 1-metre. We assessed the accuracy of the selected models by comparing them against canopy 
height estimates derived from local Airborne Laser Scanning (ALS) datasets, which served as our reference data. Eleven 
regions across New Zealand were selected based on ALS data availability, encompassing five vegetation and land cover 
types. Our methodology involved utilising and automating the processing of large New Zealand ALS datasets. To align 
resolutions for comparison, the reference canopy height was calculated by aggregating average or maximum heights at 
10 and 30 m spatial resolution. Model performances were assessed using statistical metrics, including root-mean-square 
error (RMSE), bias, and R². 

Results: Overall, all models exhibited relatively low R² values, indicating limited capture of canopy height variability. The 
Potapov 30-metre model performed best with average aggregation in shorter vegetation. In contrast, the Lang 10-metre 
model showed improved accuracy with maximum aggregation, particularly in taller vegetation, but visual boundaries 
between different vegetation types were not as distinct. The Tolan 1-metre model provided a balanced approach, 
minimising biases in lower heights but underestimating taller canopies. Results highlight model-specific strengths for 
varying vegetation structures and the sensitivity of performances to aggregation methods applied to high-resolution 
reference ALS data.

Conclusions: All three global canopy height models exhibit varied performance across New Zealand’s vegetation types. 
The findings highlight the importance of vegetation-specific applications to optimise each global model’s accuracy. 
Currently, these models are suitable for carbon accounting efforts as supplementary tools rather than replacements for 
existing methodologies.
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temperatures, particularly in the context of international 
climate goals such as the Paris Agreement (Lorenz & 
Lal 2010; IPCC 2021). Consequently, there is growing 
international interest in accurately quantifying forest 
carbon stocks and monitoring their changes over time 
(Brown 2002). This interest is especially relevant in New 

Introduction 
Forests play a pivotal role as one of the most significant 
natural carbon sinks in the global effort to mitigate 
the escalating impacts of climate change (Hunt 2009). 
Carbon sequestration in forests is critical for offsetting 
anthropogenic emissions and stabilising global 
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Zealand, where forest ecosystems are central to national 
carbon accounting efforts. The country’s Emissions 
Trading Scheme (ETS) emphasises the importance 
of accurately quantifying forest carbon stocks as 
growers strive for equitable compensation for carbon 
sequestration (Ministry for the Environment 2024).

One of the main approaches for assessing forest carbon 
stocks is measuring canopy height, a critical variable 
that correlates strongly with aboveground biomass 
and carbon storage (Coomes et al. 2018). LiDAR (Light 
Detection and Ranging) technology has been commonly 
used to measure canopy height with high precision, 
providing detailed three-dimensional data on forest 
structures (Wallace et al. 2012; Peterson et al. 2007). 
LiDAR’s ability to capture forest attributes, including 
wood volume and leaf area index, makes it invaluable 
for ecological and forest management applications 
(Lim et al. 2003). However, the widespread application 
of airborne LiDAR is often limited by high operational 
costs and logistical challenges, making it impractical 
for large-scale, frequent surveys. For example, New 
Zealand’s national LiDAR programme, initiated by Land 
Information New Zealand (LINZ) in 2016, had aimed to 
cover 80% of the country by 2024 (Lee et al. 2023).

While this represents a major achievement, the ALS 
datasets are regionally acquired, vary in acquisition 
dates, and are not regularly updated at a national scale. 
This temporal inconsistency limits their use for long-
term change detection compared to models derived from 
consistent satellite observations. Global CHMs, with 
more frequent satellite-based updates, offer potential 
for monitoring canopy height changes over time at broad 
scales. Furthermore, the comprehensive ALS archive 
in New Zealand provides a desirable testing ground 
to benchmark global CHMs. By leveraging this high-
quality archive, this study contributes to both national 
and international efforts to evaluate the reliability and 
limitations of emerging global forest monitoring tools.

Global canopy height models (CHMs) provide pre-
processed, accessible datasets for assessing forest canopy 
height and biomass at varying spatial resolutions. Unlike 
custom-built models that require technical expertise 
(Fogel et al. 2024) or paid products from providers 
such as Planet (Planet Labs PBC 2024), global CHMs 
are freely available and more accessible to implement 
for large-scale forest assessments. These models are 
commonly developed using machine learning methods 
and integrating multiple remote sensing sources (Li 
et al. 2020). They either rely on spatial or airborne 
LiDAR measurements, including data from the Global 
Ecosystem Dynamics Investigation (GEDI) or Airborne 
Laser Scanning (ALS) (Lang et al. 2023; Potapov et al. 
2021; Tolan et al. 2024). These LiDAR measurements are 
often supplemented by multispectral data (Sentinel-2, 
Landsat) and occasionally radar data (Sentinel-1, Alos) 
to predict canopy height. This approach addresses 
their respective limitations, such as using denser 
optical imagery to complement the sparse spaceborne 
LiDAR coverage (Lang et al. 2023). Machine learning 
techniques have further enhanced the accuracy of these 
models, allowing for the fusion of various data sources 

to generate high-resolution CHMs with more extensive 
coverage (Alvites et al. 2024).

Several notable global CHMs have emerged in recent 
years. Potapov et al. (2021) created a global canopy 
height model at a 30-metre resolution using regression 
tree ensembles trained on Landsat spectral data. 
Building on this work, Lang et al. (2023) developed a 
10-metre resolution CHM using a window-based deep 
learning approach, incorporating textural and spectral 
data from Sentinel-2 imagery. Most recently, Tolan et 
al. (2024) introduced a 1-metre resolution global CHM, 
utilising advanced machine learning techniques such as 
self-supervised vision transformers and convolutional 
decoders on Maxar satellite imagery and aerial LiDAR 
data for fine-scale accuracy. These advancements in 
global CHM development hold great potential for forest 
monitoring at both national and global scales.

While these global CHMs show promise, their 
applicability at finer spatial scales and across diverse 
vegetation types remains to be determined. In New 
Zealand, it is essential to assess the accuracy of these 
models across different vegetation types with unique 
structural characteristics. For instance, different 
vegetation types have distinct relationships between 
canopy height and biomass, making it crucial to assess 
the accuracy of global CHMs to avoid misestimating 
carbon stocks, which directly affects carbon accounting 
and Emissions Trading Scheme (ETS) compensation 
(Köhler et al. 2010; Li et al. 2024). Additionally, global 
models are often trained on datasets that primarily 
represent broad, global-scale vegetation patterns, 
potentially overlooking local characteristics such as New 
Zealand’s indigenous forests. 

Pearse et al. (2025) demonstrated a deep learning-
based forest mapping using high-resolution ALS data 
to generate detailed descriptions of forests, including 
canopy height, specifically focusing on exotic plantation 
forests dominated by Pinus radiata in New Zealand. 
While this represents state-of-the-art progress for 
exotic forestry in New Zealand, it has yet to be deployed 
on a national scale and does not address the unique 
structural attributes of indigenous forests or other 
vegetation types. This emphasises the need to evaluate 
global CHMs, which can account for a broader range of 
forest types, as complementary tools to enhance these 
local monitoring efforts. Validating the global CHMs 
using a robust statistical approach in New Zealand can 
establish a national-scale accuracy baseline and improve 
the understanding of the model’s performance in diverse 
local ecological settings.

Therefore, this study aims to address these 
knowledge gaps by evaluating the performance of the 
three global high-resolution CHMs—developed by 
Potapov et al. (2021), Lang et al. (2023), and Tolan et al. 
(2024)—across New Zealand’s varied vegetation types. 
These models were selected based on their recency, 
representing the latest documented developments in 
global canopy height modelling using machine learning 
and satellite imagery, as well as their open availability 
and global coverage. Specifically, the objectives are to: 
(1) Assess the accuracy of the three above-mentioned 



global CHMs by comparing them with local airborne 
LiDAR datasets as reference data; and (2) Evaluate their 
performance across a variety of New Zealand vegetation 
types, including non-vegetation, grasslands, shrublands, 
indigenous forests, and exotic plantations. This study 
focused on vegetation-related variation in CHM 
performance. Although topographic variation can affect 
canopy height estimates, particularly where models 
rely on optical imagery, its specific influence was not 
characterised here. Future work should further explore 
this aspect to better understand how terrain complexity 
interacts with global CHM accuracy.

Methods 

Study area
The study area comprises eleven regions across New 
Zealand, selected based on the availability of New 
Zealand airborne LiDAR datasets that overlapped with 
the observation dates used in the three selected CHMs: 
2019 and 2020 (Table 1). These collective regions—

Bay of Plenty, Waikato Reporoa and Upper Piako River, 
Waikato Hamilton, Gisborne, Canterbury, Tasman, West 
Coast, Northland, Wellington City, Otago-Balclutha, and 
Marlborough—encompass approximately 84,000 km² 
(Figure 1). These sites represent a range of ecosystems, 
from dense temperate rainforests on the West Coast to 
dry grasslands and shrublands in the eastern regions 
like Canterbury. The North Island, with warmer 
temperatures, supports primarily evergreen forests, 
while the South Island’s varied climate is influenced by 
the Southern Alps, creating wetter western regions and 
drier eastern ones (Allen et al. 2013; Rogers et al. 2005).
Predominant land covers in these regions include 
high-producing exotic grasslands, indigenous forests, 
shrubland and exotic plantations (LRNZ 2020). 
Elevations average 269 metres, and slopes vary from 
flat to steep (>35°). These regions feature minimal 
permanent snow and ice coverage, allowing for year-
round vegetation analysis. The regions considered span 
approximately 34°S to 47°S latitude and 169°E to 179°E 
longitude.
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Region Date of ALS LiDAR 
sensors

Dominant 
vegetation types

Slope 
(degree)

Elevation 
(m a.s.l)

LINZ Layer 
ID

Bay of Plenty 27/10/2019 - 
24/10/2022

Optech Galaxy 
PRIME

Indigenous forest 10±10 350±244 105690, 
105691

Waikato - Reporoa and 
Upper Piako River

16/4/2019 - 
17/4/2019

Optech Galaxy 
PRIME

High-producing 
exotic grassland

5±5 361±178 104108,
104113

Waikato - Hamilton 3/11/2019 - 
5/11/2019

Optech Galaxy 
PRIME

High-producing 
exotic grassland

1±1 38±12 104772,
104773

Gisborne 31/12/2018 - 
9/10/2020

Optech Orion 
H300

High-producing 
exotic grassland

12±7 377±269 105614,
105396

Canterbury

14/3/2018 - 
1/5/2019 

Optech Orion 
H300

High-producing 
exotic grassland

2±4 208±143 104931,
104936

1/5/2020 - 
4/2/2023

Optech Galaxy 
PRIME

High-producing 
exotic grassland

14±11 737±472 111133,
111135

Tasman 28/1/2020 - 
30/1/2022

Optech Galaxy 
PRIME

Indigenous forest 19±10 746±406 112854,
112856

West Coast 16/5/2020 - 
14/2/2022

Optech Galaxy 
PRIME

Indigenous forest 13±12 360±375 110163,
110164

Northland 1/12/2018 - 
1/2/2020

Trimble AX6oi High-producing 
exotic grassland

6±5 104±112 110757,
110911

Marlborough 10/2/2020 - 
15/2/2022

Optech Galaxy 
PRIME

Indigenous forest 18±11 676±534 105911,
105912

Wellington City 20/3/2019 - 
14/3/2020

Optech Galaxy 
PRIME

Broadleaved 
Indigenous 
hardwoods, high-
producing exotic 
grassland

8±7 115±99 105023,
105024

Otago - Balclutha 16/1/2020 - 
18/1/2020

Optech Galaxy 
Prime 397

High-producing 
exotic grassland

3±3 46±43 104763,
104764

TABLE 1: The date of ALS capture for each region, along with the corresponding LiDAR sensors used, dominant vegetation 
types, mean ± standard deviation of slope and elevation above mean sea level (a.s.l.). The layer identifier (Layer ID) 
on LINZ data services repository (https://data.linz.govt.nz/) for each LiDAR dataset is also indicated, including Digital 
Elevation Model (DEM) and Digital Surface Model (DSM).



Reference data
The New Zealand airborne LiDAR datasets were used as 
a benchmark in this study to validate the three selected 
global CHMs. All regional LiDAR acquisitions adhere to 
the New Zealand National Aerial Lidar Base Specification, 
ensuring a minimum vertical accuracy of ±0.2 metres, a 
horizontal accuracy of ±1.0 metres, a pulse density of  
≥ 4 pulses per square metre, and gridded at a resolution 
of 1-metre (LINZ 2022). These accuracy metrics establish 
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the LiDAR data as a reliable benchmark for assessing the 
global CHMs across New Zealand.

The study used 1-metre spatial resolution airborne 
LiDAR datasets from the Land Information New Zealand 
(LINZ) via the Registry of Open Data on Amazon Web 
Services (AWS) STAC catalogue (LINZ n.d.).  Due to 
large data sizes (40-60GB) for each region, a tile-based 
processing approach based on LINZ’s tiling scheme was 
implemented, which was found to enhance efficiency. 

FIGURE 1: The study sites, along with the year of LiDAR acquisition, cover areas from the North Island to the South Island 
of New Zealand.



Once the DEM (Digital Elevation Model) and DSM 
(Digital Surface Model) tiles were downloaded, canopy 
height was calculated by subtracting the corresponding 
DEM values from the DSM within each tile. This process 
involved calculating both the average and maximum 
canopy height values within 10 x 10 metre and  
30 x 30 metre windows (corresponding to cell factors 
of 10 and 30, respectively) across each tile. This 
upscaling was performed to align the resolution with 
the 30-metre CHM from Potapov et al. (2021) and the 
10-metre CHM from Lang et al. (2023). Both average 
and maximum aggregation methods were considered 
for evaluating the CHMs to understand the underlying 
height representation derived from the selected model’s 
machine learning method and see which height estimate 
is most accurate in New Zealand’s environment. 

Subsequently, a continuous virtual raster file 
encompassing the entire study area was generated to 
provide a mosaic of all the processed CHM tiles. The 
entire workflow, including data retrieval, processing, 
and virtual raster creation, was automated using Python 
scripting with the GDAL library (GDAL/OGR contributors 
2024). A virtual raster (VRT) is a GDAL technique in 
Python for merging multiple raster tiles into a single 
file (GDAL/OGR contributors 2024). It virtually merges 
the tiles but references them in a lightweight XML 
(Extensible Markup Language) file, allowing for efficient 
management of large datasets without duplicating the 
files or requiring extensive computational resources. 

Global canopy height models

Potapov et al. (2021)
Potapov et al. (2021) developed a global CHM by 
integrating GEDI LiDAR data with Landsat optical 
data at a 30-metre spatial resolution. They processed 
multitemporal Landsat data spanning 1997 to 2019 to 
create consistent metrics, including surface reflectance 
and phenology indicators, while using only the 2019 
subset of Landsat data to represent forest conditions 
for that year. A median-based regression tree model 
was calibrated using the GEDI’s footprint-based relative 
height metric (RH95) to predict forest height based on 
Landsat metrics. The relative height (RH) represents 
the height above the ground corresponding to the n-th 
percentile of the LiDAR energy returned, spanning from 
the top of the canopy to the signal end (Li et al. 2023). 

Lang et al. (2023)
The Lang et al. (2023) 10-metre model utilised Sentinel 
2 optical images in 2020 as input and trained with global 
reference height derived from GEDI raw waveforms 
(collected between 2019 and 2020). They utilised Level 
1B/L1B GEDI waveforms to derive the RH98 height 
metric as canopy-top height reference data. Their deep 
learning approach – convolutional neural network (CNN) 
specifically learned to extract patterns and features of 
the raw satellite images that are predictive of vegetation 
structure by training on GEDI data, which provides 
precise measurements of canopy height at a 10-metre 
resolution. This model also integrates geographic 

coordinates, enhancing its performance by allowing it to 
learn spatial priors based on location-specific vegetation 
characteristics.

Tolan et al. (2024)
Tolan et al. (2024) produced a 1-metre resolution 
global CHM with self-supervised training of a Vision 
Transformer on Maxar imagery from 2018–2020.  
A dense vision transformer decoder was trained using 
aerial LiDAR-derived canopy height maps from the 
National Ecological Observatory Network (NEON) as 
labels, linking satellite imagery features to canopy height 
predictions. Furthermore, the aerial LiDAR model’s 
outputs were calibrated using a separate convolutional 
model trained on GEDI spaceborne LiDAR data. The 
GEDI model produced scaling factors to adjust the aerial 
LiDAR-based CHM predictions, thus improving global 
accuracy.

All three of the global CHMs by Potapov et al. (2021), 
Lang et al. (2023), and Tolan et al. (2024) used in this 
study are accessible through Awesome Google Earth 
Engine’s (GEE) Community Catalogue (Roy et al. 2024). 
GEE is widely used in remote sensing analyses as it offers 
a user-friendly platform for retrieving and processing 
geospatial datasets. The analysis for Tolan et al. (2024) 
was done in GEE due to the substantial data size at 
a 1-metre resolution, which made local processing 
impractical. Only datasets from Potapov et al. (2021) and 
Lang et al. (2023) were retrieved for local processing. 
The retrieved raster data was reprojected to match 
the study area’s New Zealand Transverse Mercator 
coordinate system and reference LiDAR datasets (NZTM, 
EPSG:2193). Bicubic interpolation was employed for 
resampling, and optimal boundaries were defined based 
on the study area to optimise file size and computational 
requirements.

Analysis and evaluation metrics
A random sample of 20,000 points was used to evaluate the 
five selected land covers across the CHMs and reference 
ALS datasets. This sample size was selected to ensure 
statistical robustness while maintaining computational 
efficiency for large-area national datasets. This random 
sampling approach serves as an initial assessment by 
reducing the risk of over- or under-representing any 
particular class, while laying the groundwork for future 
stratified sampling approaches that could target specific 
vegetation categories or regions to refine the evaluation 
further. The land cover data was obtained from the Land 
Cover Database (v5.0) to represent varied vegetation 
and land cover height across the study area: sand or 
gravel, high-producing exotic grassland, mixed exotic 
shrubland, indigenous forest and exotic forest (LRNZ 
2020). Non-vegetated areas like sand or gravel surfaces 
were first assessed to understand the model’s baseline 
performance. In the case of Tolan et al. (2024), canopy 
height values were extracted directly from GEE with the 
sample points for the analysis.

To comprehensively assess the three selected global 
CHM’s performance against the reference ALS data, this 
study employed a combination of statistical metrics, 
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including calculating the residuals:

1.	 Bias measures the trueness of the CHM as the 
average discrepancy between the CHM map and the 
actual values measured by the reference ALS data. 
The bias reflects the overall tendency of the CHM 
map to either overestimate or underestimate canopy 
height compared to the ALS data. It is calculated by 
averaging the difference between predicted and 
actual values across all data points. A positive bias 
indicates a systematic overestimation by the model 
(i.e., the model consistently predicts higher canopy 
heights than the ALS measurements). Conversely, 
a negative bias suggests underestimation. Ideally, 
the bias should be close to zero, signifying minimal 
systematic bias in the model’s predictions.

Where yi are the true canopy height measurements 
from ALS data and yl are the canopy height 
predictions from the global CHM.

2.	 Root Mean Squared Error (RMSE) compounds 
trueness with precision as a more comprehensive 
measure of the model’s accuracy. It calculates the 
square root of the average squared difference 
between corresponding data points. Lower RMSE 
values indicate better agreement between the two 
datasets.

where yi are the true canopy height measurements 
from ALS data and yl are the canopy height 
predictions from the global CHM.

3.	 Finally, the coefficient of determination R2 is a 
statistical measure that reflects the proportion of 
variance in the ALS data represented by the CHM’s 
estimates. It assesses how well the model captures 
the linear relationship between the predicted value 
from CHM and actual canopy heights from the ALS 
data. R2 ranges from 0 to 1. A value of 1 indicates 
a perfect fit, where the model reproduces all the 
variability observed in the ALS data perfectly. 
Conversely, a value of 0 suggests that the model has 
no explanatory power.

	
where yi are the true canopy height measurements 

from ALS data and yl are the canopy height predictions 
from the global CHM and  are the mean of the true canopy 
height measurements from ALS data.

Results
The analysis indicated that the accuracy of the CHMs 
varied depending on the type of vegetation and the 
model resolution. All models generally did not capture a 
full data variability with relatively low R² values. When 
viewed as maps, it was revealed that the Lang 10-metre 
model displayed higher height signals with greater 
blurriness and showed less distinct boundaries. This 
effect is likely due to sparse supervision during model 
training, which limited the model’s ability to learn high-
frequency canopy height variation between adjacent 
pixels, as noted by Lang et al. (2023). In contrast, the 
Potapov 30-metre map exhibited more pixelation, and 
the Tolan 1-metre map is almost on par with the ALS 
map (Figure 2). Some height discrepancies were found 
when comparing the maps because the retrieval dates 
were different.

Comparison across aggregation types
The average aggregation method provided more 
consistent results in the Potapov 30-metre model, 
with lower RMSE and more stable estimates than the 
maximum aggregation (Figures 3 and 4). This approach 
was better suited for representing overall canopy 
heights across all vegetation for this particular model. 
Conversely, for the Lang 10-metre model, the maximum 
aggregation method generally outperformed the average 
aggregation in terms of RMSE across all vegetation types, 
often resulting in lower values (Figures 3 and 4). Notably, 
there is a big difference in the bias values. For instance, in 
indigenous forests, the maximum aggregation achieved a 
bias of 2.82 m. In comparison, the average aggregation 
had a higher bias of 8.10 m, similar to the exotic forests 
where the maximum shows 3.18 m and the average 
shows 10.85 m.

Comparison across models and vegetation types
The performance of global CHMs varied across models, 
resolutions, and vegetation types, with relatively low 
R² values ranging from 0.15 to 0.38 and RMSE values 
between 1.21 m and 13.70 m (Figures 3 and 4). All models 
fall short of the 1:1 line. The exotic forest class always 
yields significantly higher R², although models tend to 
exhibit a marked non-linear relationship to the reference 
ALS data (Figures 3 & 4). In non-vegetated areas, the 
Potapov 30-metre average model and Tolan 1-metre 
model were the most effective, with RMSE values below 
2 m and minimal bias despite a relatively low R² value 
of <0.35. Lang’s 10-metre model consistently displayed 
the largest positive bias, in particular systematically 
suggesting vegetation in bare areas. Both the Potapov 
and Tolan models performed better in shorter vegetation 
than the Lang 10-metre model. However, the Tolan 
model consistently displayed negative biases, whereas 
the Potapov model showed positive biases. The Potapov 
30-metre model’s approach of setting observations 
below a 3-metre threshold to zero is also reflected in the 
plots (Figure 3).

For taller vegetation, such as indigenous and exotic 
forests, the performance of these two models generally 
declined, with higher RMSE and bias. The Lang 10-metre 
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maximum aggregation model generally outperformed 
the Potapov 30-metre and Tolan 1-metre models for 
these vegetation types in terms of R² and bias, although 
the RMSE is slightly higher in exotic forests.  When the 
aggregation approach is comparable, the Lang model 
also displayed greater heights in exotic forests than 
other models, saturating around 35-40 metres. However, 
the indigenous forest outperformed the exotic forest in 

terms of bias and RMSE for both the Lang 10-metre and 
Tolan 1-metre models. 

Residual analysis was limited to exotic forests, which 
exhibited the widest canopy height range and the 
most linear relationship between ALS and CHM values, 
allowing for clearer and more statistically meaningful 
residual patterns than other land cover types. The 
residuals reveal a common trend among models: both 
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FIGURE 2: Comparison of Potapov 30-metre CHM, Lang 10-metre CHM, Tolan 1-metre CHM and the ALS-derived canopy 
height map (fifth column), with Sentinel-2 RGB imagery as reference. Each land cover is represented by sand or gravel, 
high-producing exotic grassland, mixed exotic shrubland, indigenous forest and exotic forest. The year shows the retrieval 
time of each model.
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the Potapov 30-metre average and maximum models 
tend to overestimate canopy heights in the lower to 
mid ranges (until 20-24 m) and underestimate them as 
heights increase beyond that (Figure 5). Similarly, the 
Lang 10-metre models show overestimation at shorter 
canopy heights, transitioning to underestimation for 
taller canopies around 24-32 m. In contrast, the Tolan 
1-metre model performed differently, minimising 
overestimation at lower heights (<8 m) but increasing 
underestimation for medium to tall canopies.

Discussion
This study evaluated the accuracy of three global canopy 
height models (CHMs)—Potapov et al. (30-metre), Lang 
et al. (10-metre), and Tolan et al. (1-metre)—across 
varied New Zealand vegetation types, using ALS data as 
a benchmark. The findings reveal distinct performance 
patterns for each model and provide insight into their 
suitability for forest carbon accounting and management 
applications.

Potapov et al. (2021) model
Potapov et al. (2021) developed a 30-metre global CHM 
using regression tree ensembles trained on Landsat 
spectral data and GEDI RH95 height metrics. Our 
results revealed that the average aggregation approach 
produced more stable estimates and lower RMSE values 
than maximum aggregation. The results aligned with 
the model’s reliance on a regression tree ensemble that 
outputs median values. However, this design limits the 
model’s ability to accurately represent the shortest and 
tallest forest structures, a limitation further exacerbated 
by the medium resolution of Landsat data (Potapov et al. 
2021; Hansen et al. 2016).

In examining non-vegetated areas, the model 
exhibited negligible bias (-0.02 m) and low RMSE values 
(below 2 m), suggesting that the model is well-calibrated 
to detect and correctly classify near-zero canopy heights. 
Their integration of phenology-based differentiation 
and temporal metrics allows accurate classification, 
with non-vegetated areas most likely identified through 
static reflectance and low NDVI (Normalized Difference 
Vegetation Index); while dynamic seasonal changes and 

FIGURE 5: Residuals of canopy height estimates for exotic forests across various models at 2-metre intervals.
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peak productivity characterise vegetated areas (Potapov 
et al. 2021). The model’s baseline performance implies 
that deviations observed in vegetated regions may 
indicate specific model limitations related to canopy 
complexity rather than systemic calibration issues. 

Inherent challenges associated with using GEDI 
RH95 height metrics exist in sparse and multilayered 
vegetation areas. In our study, the Potapov 30-metre 
model exhibited small positive biases (<3 m) in the 
average aggregation method for high-producing exotic 
grasslands and mixed exotic shrublands. This result is 
consistent with the model’s reliance on GEDI’s RH95 
metric, which can overestimate canopy heights in 
sparsely vegetated areas due to the tendency to include 
non-canopy returns (Zhu et al. 2022; Yu et al. 2024). The 
higher pulse density (≥4 points/m²) and fine resolution 
(1 metre) of New Zealand ALS data likely exaggerated this 
overestimation by capturing detailed canopy structures 
and delineating non-canopy elements that RH95 may 
mistakenly include. This positive bias also aligns with 
Potapov’s visual analysis findings of overestimation in 
grasslands, particularly in New Zealand and Lesotho, 
though their statistical evaluation suggested an overall 
underestimation due to the disproportional sampling of 
tall tropical forests used in their ALS validation and their 
regression tree approach. 

For taller vegetation, such as indigenous and exotic 
forests, the Potapov model struggled to accurately 
represent canopy heights, with higher RMSE and positive 
bias than shorter vegetation types shown in our study. 
The maximum aggregation method amplified these 
discrepancies by showing underestimation and higher 
RMSE, revealing the model’s limitations in capturing 
peak canopy heights. Dorado-Roda et al. (2021) 
observed underestimation biases when comparing 
RH95-derived heights to ALS data for Mediterranean 
oak and pine forests. Their approach differed from 
ours, as they normalised ALS data to 1 point/m² and 
applied a 12.5-metre buffer around GEDI footprints. 
These differences underscore how ALS data resolution 
and processing methods can shape the interpretation of 
RH95’s performance, with finer ALS resolutions exposing 
overestimation in tall vegetation and normalised ALS 
datasets highlighting underestimation under similar 
vegetation height.

Despite Potapov’s relative advantage in shorter 
vegetation compared to the Lang 10-metre model, it was 
still outperformed by the Tolan 1-metre model. Moreover, 
its limitations in capturing taller canopy heights and 
vegetation complexity underscore the need for nuanced 
application and further refinement. The Potapov 
30-metre model’s overall strengths lie in its stability and 
utility for large-scale monitoring, particularly in non-
vegetated and shorter vegetation types. By leveraging 
its capability for temporal monitoring, the model holds 
promise for advancing consistent global forest structural 
analysis and carbon stock monitoring. Currently, the 
model is only suited for a generalised assessment of the 
New Zealand ecosystem and is not recommended for a 
detailed level carbon stock assessment.

Lang et al. (2023) model
The Lang et al. (2023) 10-metre canopy height model 
employs a window-based deep learning approach that 
leverages Sentinel-2 spectral and textural data alongside 
GEDI RH98 metrics. By training CNN with sparse 
supervision from GEDI LIDAR-derived canopy top height 
data, the model effectively incorporates global spectral-
textural information to predict canopy heights. However, 
like other global models, Lang-CHM’s performance is 
influenced by the structural diversity of vegetation and 
the limitations inherent in its design and training data.
To evaluate the Lang 10-metre model’s baseline 
performance, the model exhibited higher bias and 
RMSE for bare areas. Their window-based approach 
could inadvertently incorporate signals from adjacent 
vegetation into the estimation in areas that suggest 
minimal or zero vegetation. For example, even small 
patches of low-lying vegetation or shrubs near bare 
surfaces might influence the overall signal within the 
window, leading to inflated height estimates. These 
challenges might be compounded by the reliance on 
GEDI RH98 metrics. The wide pulse width of GEDI’s 
laser signals (approximately 4.5 metres) can inflate RH 
values, misrepresenting surface height (Dubayah et al. 
2020). While Lang et al. (2023) mitigated this limitation 
by using RH98 instead of RH100, residual inaccuracies 
persist, introducing baseline height signals even in non-
vegetated regions (Li et al. 2023). As seen from our 
results, these inflated values likely propagate through 
short and tall vegetation estimates, creating systematic 
biases across short and tall vegetation.

Interestingly, the Lang model performed relatively 
better for New Zealand’s indigenous forests than exotic 
plantations despite the indigenous forests’ unique 
vegetation structure. This finding contrasts with 
expectations as managed exotic forests, especially the 
dominant species radiata pine (P. radiata), are widely 
distributed across other continents (North America) and 
are likely well-represented in the training data used for 
global models (Lang et al. 2022). This observation aligns 
with the broader understanding of global models’ reliance 
on generalised training data and GEDI’s characteristics. 
As Schwartz et al. (2024) noted, GEDI-based models 
tend to perform better in regions with dense, diverse 
canopy layers because RH98 metrics effectively capture 
upper canopy features. In indigenous forests, the diverse 
vertical layering might inadvertently align with the Lang 
model’s emphasis on spectral-textural inputs, explaining 
its improved performance. For exotic forests in the Lang 
model, the relatively higher bias and RMSE might have 
resulted from spectral similarities between canopy and 
understorey elements in plantation settings, which the 
model cannot distinguish due to its reliance on training 
datasets generalised to different biomes and forest types. 
This challenge reflects findings in similar studies, such 
as Fayad et al. (2024), where the uniformity of plantation 
forests posed difficulties for global models trained on 
diverse vegetation types.

This study also confirms that the Lang 10-metre 
model’s performance improves significantly when 



maximum aggregation methods are applied, particularly 
for taller canopies. Their use of GEDI RH98— 
a height metric particularly suited for peak height 
approximation—enhances alignment with maximum 
height measurements (Besic et al. 2024). This height 
metric contrasts with GEDI RH95-based methods, such 
as those by Potapov et al. (2021), which tend to yield 
lower canopy height estimates and introduce slight 
underestimation biases for tall forests (Kacic et al. 
2023). For example, in exotic forests, the bias from the 
Lang 10-metre model was notably lower with maximum 
aggregation (3.18 m) compared to average aggregation 
(10.85 m). This observation is consistent with Lang’s 
approach as they had already explicitly addressed the 
saturation effect on tall canopies, thus reflecting the 
expected results of our findings.

However, despite these improvements, Lang et al. 
(2023) revealed error and low bias in non-vegetated 
and low-height areas, such as deserts and temperate 
grasslands. They reported a performance decline in 
denser or taller vegetation types, such as mangroves, 
tundra, and tropical coniferous forests, where it exhibits a 
consistent positive bias, with overestimations averaging 
approximately 2.5 metres. Our findings support 
these observations, with the Lang 10-metre model 
overestimating both short and tall vegetation but better 
estimates in tall vegetation. Similar overestimations have 
been observed in other studies—Moudrý et al. (2024), 
Torresani et al. (2023), Tsao et al. (2023), and Alvites et 
al. (2024). Moudrý et al. (2024) found that the transition 
between forest and non-forest remains unclear. Lang 
et al. (2023) acknowledged that the trade-off in their 
model’s design for improving the performance of tall 
canopies caused a slight overestimation of low canopy 
heights. Our findings suggest that this trade-off is quite 
pronounced and may have also included the systematic 
bias observed in the GEDI system, as previously 
discussed.

Moudrý et al. (2024) evaluated Lang, Potapov and 
Tolan CHMs in Mount Richmond Forest stratified by 
height bins. For the 20–30 m class, they found a Lang 
bias of +1 m (RMSE 5 m), Potapov bias of –5 m (RMSE 
9 m) and Tolan bias of –11 m (RMSE 12 m). In our 
national‐scale indigenous forest analysis, the Lang 10 
m (maximum) model exhibited a bias of +2.82 m (RMSE 
7.53 m), the Potapov 30 m (average) model +5.37 m 
(RMSE 8.30 m), and the Tolan 1 m model –3.47 m (RMSE 
8.02 m). Although absolute biases are somewhat larger 
in our national-scale analysis, the direction of errors is 
consistent: Lang and Potapov tend to overestimate mid-
height canopies, while Tolan underestimates. Likewise, 
all three models increasingly misestimate heights 
beyond ~30 m. This agreement between site‐specific 
and nationwide assessments reinforces the need for 
caution when applying these CHMs to forest stands 
within New Zealand. 

Overall, the Lang et al. (2023) model demonstrates 
considerable strengths in estimating taller canopies 
due to its reliance on GEDI RH98 metrics and advanced 
deep-learning techniques. However, its systematic 

overestimation of low canopy heights, compounded by 
inherent limitations in the GEDI system and spectral-
textural ambiguities, suggests that the model could be 
more suited for applications focused on taller canopies. 
Localised adjustments or alternative models may be 
required for regions with significant short vegetation 
cover to address the inherent biases observed.

Tolan et al. (2024) model
Tolan et al. (2024) developed a global canopy height 
map at 1-metre resolution using high-resolution Maxar 
satellite imagery and airborne LiDAR-derived canopy 
height models. They employed a self-supervised vision 
transformer and a deep-learning approach to estimate 
canopy height from RGB satellite imagery. These 
techniques enable the model to provide unattainable 
detailed spatial insights with coarser-resolution models 
like those of Potapov et al. (2021) and Lang et al. (2023). 

The Tolan model consistently outperformed the other 
CHMs in non-vegetated and shorter vegetation areas, 
achieving lower RMSE and bias values in our study. 
Their results indicate a strong baseline performance 
comparable to that of Potapov et al. (2021). Moudrý 
et al. (2024) noted its high sensitivity in capturing the 
transitions between forest and grassland, emphasising 
its suitability for applications that demand precision. 
This capability aligns with findings from Wagner et 
al. (2024), demonstrating the model’s robustness in 
submetre-scale canopy height mapping for California. 
The model’s ability to minimise overestimation in 
shorter canopies compared to other CHM underscores its 
suitability for accurately estimating biomass in regions 
where precision in capturing minor height variations is 
critical. 

However, challenges remain for the Tolan 1-metre 
model in estimating taller canopies despite displaying a 
better performance than Potapov’s model. Our analysis 
and observations by Fogel et al. (2024) found that the 
model tended to underestimate canopy heights in taller 
forests despite its high resolution. Moreover, Bermudez 
et al. (2024) found underestimation across the entire 
data range for Tolan’s model in their study, and Wagner 
et al. (2024) reported underestimation for tall trees 
>45 m. Such underestimation suggests that further 
refinement in training data to include wider biomes or 
adjustments in the model’s loss functions could improve 
its accuracy for tall canopy environments (Wagner et al. 
2024; Lang et al. 2023).

Despite these limitations, the Tolan et al. (2024) 
model represents a global high-resolution canopy height 
mapping benchmark. Its fine spatial detail and accuracy 
for shorter canopies position it as a transformative tool 
for vegetation monitoring, with significant implications 
for national carbon accounting frameworks and 
biodiversity assessments. In New Zealand, where 
substantial expanses of native and exotic grasslands and 
shrublands dominate the landscape, the model provides 
a promising pathway to advance both policy and practice 
in managing and conserving these critical ecosystems.
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Limitations and opportunities
This study did not investigate the impact of GEDI 
geolocation errors, slope, and terrain variations on 
global CHM measurements. Previous studies (Quirós 
et al. 2021; Moudrý et al. 2022; Lang et al. 2023) have 
highlighted these factors as significant sources of error 
in CHMs. For instance, GEDI geolocation uncertainties 
could result in canopy height estimates being off by 
approximately 2 metres (Li et al. 2023). Additionally, 
GEDI’s larger footprint (25 metres) is prone to bias 
on steep slopes and underperforms in fragmented 
landscapes like mountainous regions, reducing data 
accuracy and spatial representation (Mandl et al. 
2023). Developing geolocation optimisation processes 
with high-precision ALS data could reduce these 
systematic errors (Tang et al. 2023). While Lang et al. 
(2023) considered geolocation uncertainty unlikely to 
hinder their model’s utility, its implications for local-
scale applications like New Zealand’s forests remain 
underexplored.

A significant limitation in this study stems from 
temporal discrepancies between ALS acquisition and 
global CHM retrieval times, with differences of up 
to ±2-3 years across the 11 regions analysed. Such 
temporal mismatches can lead to inconsistencies in 
canopy height comparisons, particularly in fast-growing 
or structurally dynamic ecosystems like exotic forests. 
Incorporating species-specific growth models could help 
adjust ALS canopy heights to match CHM acquisition 
dates. For instance, height-age curves tailored to P. 
radiata or other dominant species could account for 
expected growth over the temporal gap, enabling more 
accurate comparisons (van der Colff & Kimberley 2013). 
Integrating species-specific growth models with regional 
exotic forest descriptions could support more targeted 
and locally calibrated temporal adjustment methods. 
Another fundamental limitation is the restricted spatial 
distribution of training data used in the Lang et al. 
(2023) model. As global models often rely on training 
datasets that emphasise a few specific biomes, they 
may not fully capture unique structural attributes of 
local vegetation, such as those found in New Zealand. 
Spatial misalignments between the global CHMs and 
ALS-derived canopy height maps could also contribute 
to sampling uncertainty. Although visual inspections 
indicated overall alignment, small discrepancies, 
particularly for the GEE-processed Tolan model, may 
affect point-based canopy height comparisons.

Future efforts could incorporate terrain and 
environmental factors into the analysis to address 
these limitations and assess these models more 
comprehensively. For instance, incorporating slope, 
elevation, and other topographical variables could 
enhance the study to account for terrain-induced 
variations in canopy height accuracy assessment (Besic 
et al. 2024; Li et al. 2024b). The random sampling 
approach in this study did not adequately capture 
the height variation in indigenous forests, where tree 
growth tends to be more stable than exotic plantations. 
A stratified sampling design targeting specific growth 
stages and vegetation characteristics could improve 
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model validation, providing deeper insights into its 
application to areas where ALS data is unavailable in 
New Zealand.

Our analysis revealed non-linear relationships 
between CHMs and ALS data for all land cover 
types, suggesting potential improvements through 
mathematical transformations. For exotic forests, where 
the relationship shows a curved trend, applying non-
linear transformations to Lang-CHM values could better 
capture height variations, reduce bias, and improve 
model fit. Testing various transformations could help 
refine the regression model, particularly for vegetation 
types with significant height variability.

New Zealand’s extensive, high-resolution ALS 
datasets provide an excellent opportunity to enhance 
global CHMs. Among all global CHMs, Lang et al. (2023) 
stand out by providing open access to their code and 
model, offering valuable opportunities to improve its 
performance by reducing bias and capturing the unique 
structural characteristics of New Zealand’s forests. This 
approach could facilitate the development of a national-
level canopy height map at a 10-metre resolution, which 
could subsequently be translated into a carbon stock 
map similar to those produced by Lang et al. (2021).

While our results indicate that all global CHMs show 
notable biases and relatively low R² values, reflecting 
limited ability to fully capture canopy height variability, 
the models still exhibit distinct strengths depending 
on vegetation structure and data aggregation methods. 
Therefore, these CHMs could be useful as complementary 
tools for New Zealand’s forest monitoring and carbon 
accounting efforts, especially where large-scale updates 
are needed. However, users should be aware of the 
potential for substantial biases, and consider these 
uncertainties when applying the models in policy or 
compliance contexts. Importantly, our findings reinforce 
the need for locally developed and calibrated models 
that can better reflect New Zealand’s various vegetation 
structures and provide the accuracy required for 
regional-scale applications such as ETS reporting.

An additional avenue for exploration involves 
harmonising spatial resolutions for a more equitable 
comparison between CHMs. Aggregating Lang’s 
10-metre and Tolan’s 1-metre CHMs to the coarser 
30-metre resolution of Potapov’s model could offer 
valuable insights. This harmonised comparison may 
reveal statistical benefits that highlight the relative 
strengths of higher-resolution CHMs when evaluated on 
an equivalent spatial scale. Such an approach could help 
disentangle the effects of resolution from the underlying 
model design, providing a clearer picture of their relative 
performance across varied vegetation types.

In summary, the analysis highlighted distinct strengths 
across the three models. The Potapov 30-metre model 
provided reliable general canopy height estimates at 
broad scales, while the Lang 10-metre model offered 
improved performance in taller canopies but exhibited 
challenges in low-vegetation areas. The Tolan 1-metre 
model aligned well with ALS data for shorter vegetation, 
presenting potential for fine-scale applications. 
Recognising these complementary strengths is essential 



when selecting a model for a given spatial scale or 
management objective.

Conclusions
The analysis revealed that the Potapov 30-metre model 
is well-suited for a broad-scale general canopy height 
assessment due to its reliance on a median-based 
regression tree ensemble and coarser resolution that 
limits its applicability for detailed assessments. The 
Lang 10-metre model, while excelling in estimating taller 
canopies through its advanced deep learning approach, 
struggled with non-vegetated areas and short vegetation, 
reflecting the trade-offs inherent in its design. The 
Tolan 1-metre model demonstrated strong alignment 
with ALS data for shorter vegetation, highlighting its 
potential for fine-scale vegetation mapping, though its 
underestimation of taller canopies warrants further 
caution.

These findings emphasise the strengths and 
limitations of each CHM, illustrating the importance 
of tailored approaches for vegetation-specific 
applications. At present, global CHMs are best suited 
as complementary tools for carbon accounting rather 
than replacements for existing methodologies. While 
they provide valuable large-scale insights, their current 
limitations require careful consideration when applied 
to local-scale assessments. By addressing the limitations 
and capitalising on opportunities for refinement, 
insights on each global CHM can improve in New 
Zealand’s context and play a critical role in advancing 
forest monitoring, enhancing carbon accounting, and 
supporting sustainable forest management within the 
broader context of climate change mitigation efforts.
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