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Abstract

Background: Global canopy height models are becoming prolific yet require evaluation across New Zealand’s diverse
vegetation types to assess their accuracy and applicability. Accurate measurement of canopy height is crucial for estimating
above-ground woody biomass, which is essential for modelling carbon emissions and sequestration in the context of
climate change. These models generally rely on remote sensing data and machine learning techniques, with Light Detection
and Ranging (LiDAR) technology commonly employed for precise measurement.

Methods: This study validated the three latest global canopy height models, each provided at a different resolution:
30-metre, 10-metre, and 1-metre. We assessed the accuracy of the selected models by comparing them against canopy
height estimates derived from local Airborne Laser Scanning (ALS) datasets, which served as our reference data. Eleven
regions across New Zealand were selected based on ALS data availability, encompassing five vegetation and land cover
types. Our methodology involved utilising and automating the processing of large New Zealand ALS datasets. To align
resolutions for comparison, the reference canopy height was calculated by aggregating average or maximum heights at
10 and 30 m spatial resolution. Model performances were assessed using statistical metrics, including root-mean-square
error (RMSE), bias, and R

Results: Overall, all models exhibited relatively low R? values, indicating limited capture of canopy height variability. The
Potapov 30-metre model performed best with average aggregation in shorter vegetation. In contrast, the Lang 10-metre
model showed improved accuracy with maximum aggregation, particularly in taller vegetation, but visual boundaries
between different vegetation types were not as distinct. The Tolan 1-metre model provided a balanced approach,
minimising biases in lower heights but underestimating taller canopies. Results highlight model-specific strengths for
varying vegetation structures and the sensitivity of performances to aggregation methods applied to high-resolution
reference ALS data.

Conclusions: All three global canopy height models exhibit varied performance across New Zealand’s vegetation types.
The findings highlight the importance of vegetation-specific applications to optimise each global model’s accuracy.
Currently, these models are suitable for carbon accounting efforts as supplementary tools rather than replacements for
existing methodologies.
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Introduction

Forests play a pivotal role as one of the most significant
natural carbon sinks in the global effort to mitigate
the escalating impacts of climate change (Hunt 2009).
Carbon sequestration in forests is critical for offsetting
anthropogenic emissions and stabilising global

temperatures, particularly in the context of international
climate goals such as the Paris Agreement (Lorenz &
Lal 2010; IPCC 2021). Consequently, there is growing
international interest in accurately quantifying forest
carbon stocks and monitoring their changes over time
(Brown 2002). This interest is especially relevant in New
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Zealand, where forest ecosystems are central to national
carbon accounting efforts. The country’s Emissions
Trading Scheme (ETS) emphasises the importance
of accurately quantifying forest carbon stocks as
growers strive for equitable compensation for carbon
sequestration (Ministry for the Environment 2024).

One of the main approaches forassessing forest carbon
stocks is measuring canopy height, a critical variable
that correlates strongly with aboveground biomass
and carbon storage (Coomes et al. 2018). LiDAR (Light
Detection and Ranging) technology has been commonly
used to measure canopy height with high precision,
providing detailed three-dimensional data on forest
structures (Wallace et al. 2012; Peterson et al. 2007).
LiDAR’s ability to capture forest attributes, including
wood volume and leaf area index, makes it invaluable
for ecological and forest management applications
(Lim et al. 2003). However, the widespread application
of airborne LiDAR is often limited by high operational
costs and logistical challenges, making it impractical
for large-scale, frequent surveys. For example, New
Zealand’s national LiDAR programme, initiated by Land
Information New Zealand (LINZ) in 2016, had aimed to
cover 80% of the country by 2024 (Lee et al. 2023).

While this represents a major achievement, the ALS
datasets are regionally acquired, vary in acquisition
dates, and are not regularly updated at a national scale.
This temporal inconsistency limits their use for long-
term change detection compared to models derived from
consistent satellite observations. Global CHMs, with
more frequent satellite-based updates, offer potential
for monitoring canopy height changes over time at broad
scales. Furthermore, the comprehensive ALS archive
in New Zealand provides a desirable testing ground
to benchmark global CHMs. By leveraging this high-
quality archive, this study contributes to both national
and international efforts to evaluate the reliability and
limitations of emerging global forest monitoring tools.

Global canopy height models (CHMs) provide pre-
processed, accessible datasets for assessing forest canopy
height and biomass at varying spatial resolutions. Unlike
custom-built models that require technical expertise
(Fogel et al. 2024) or paid products from providers
such as Planet (Planet Labs PBC 2024), global CHMs
are freely available and more accessible to implement
for large-scale forest assessments. These models are
commonly developed using machine learning methods
and integrating multiple remote sensing sources (Li
et al. 2020). They either rely on spatial or airborne
LiDAR measurements, including data from the Global
Ecosystem Dynamics Investigation (GEDI) or Airborne
Laser Scanning (ALS) (Lang et al. 2023; Potapov et al.
2021; Tolan et al. 2024). These LiDAR measurements are
often supplemented by multispectral data (Sentinel-2,
Landsat) and occasionally radar data (Sentinel-1, Alos)
to predict canopy height. This approach addresses
their respective limitations, such as using denser
optical imagery to complement the sparse spaceborne
LiDAR coverage (Lang et al. 2023). Machine learning
techniques have further enhanced the accuracy of these
models, allowing for the fusion of various data sources
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to generate high-resolution CHMs with more extensive
coverage (Alvites et al. 2024).

Several notable global CHMs have emerged in recent
years. Potapov et al. (2021) created a global canopy
height model at a 30-metre resolution using regression
tree ensembles trained on Landsat spectral data.
Building on this work, Lang et al. (2023) developed a
10-metre resolution CHM using a window-based deep
learning approach, incorporating textural and spectral
data from Sentinel-2 imagery. Most recently, Tolan et
al. (2024) introduced a 1-metre resolution global CHM,
utilising advanced machine learning techniques such as
self-supervised vision transformers and convolutional
decoders on Maxar satellite imagery and aerial LiDAR
data for fine-scale accuracy. These advancements in
global CHM development hold great potential for forest
monitoring at both national and global scales.

While these global CHMs show promise, their
applicability at finer spatial scales and across diverse
vegetation types remains to be determined. In New
Zealand, it is essential to assess the accuracy of these
models across different vegetation types with unique
structural characteristics. For instance, different
vegetation types have distinct relationships between
canopy height and biomass, making it crucial to assess
the accuracy of global CHMs to avoid misestimating
carbon stocks, which directly affects carbon accounting
and Emissions Trading Scheme (ETS) compensation
(Kohler et al. 2010; Li et al. 2024). Additionally, global
models are often trained on datasets that primarily
represent broad, global-scale vegetation patterns,
potentially overlooking local characteristics such as New
Zealand’s indigenous forests.

Pearse et al. (2025) demonstrated a deep learning-
based forest mapping using high-resolution ALS data
to generate detailed descriptions of forests, including
canopy height, specifically focusing on exotic plantation
forests dominated by Pinus radiata in New Zealand.
While this represents state-of-the-art progress for
exotic forestry in New Zealand, it has yet to be deployed
on a national scale and does not address the unique
structural attributes of indigenous forests or other
vegetation types. This emphasises the need to evaluate
global CHMs, which can account for a broader range of
forest types, as complementary tools to enhance these
local monitoring efforts. Validating the global CHMs
using a robust statistical approach in New Zealand can
establish a national-scale accuracy baseline and improve
the understanding of the model’s performance in diverse
local ecological settings.

Therefore, this study aims to address these
knowledge gaps by evaluating the performance of the
three global high-resolution CHMs—developed by
Potapov et al. (2021), Lang et al. (2023), and Tolan et al.
(2024)—across New Zealand’s varied vegetation types.
These models were selected based on their recency,
representing the latest documented developments in
global canopy height modelling using machine learning
and satellite imagery, as well as their open availability
and global coverage. Specifically, the objectives are to:
(1) Assess the accuracy of the three above-mentioned
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global CHMs by comparing them with local airborne
LiDAR datasets as reference data; and (2) Evaluate their
performance across a variety of New Zealand vegetation
types, including non-vegetation, grasslands, shrublands,
indigenous forests, and exotic plantations. This study
focused on vegetation-related variation in CHM
performance. Although topographic variation can affect
canopy height estimates, particularly where models
rely on optical imagery, its specific influence was not
characterised here. Future work should further explore
this aspect to better understand how terrain complexity
interacts with global CHM accuracy.

Methods

Study area

The study area comprises eleven regions across New
Zealand, selected based on the availability of New
Zealand airborne LiDAR datasets that overlapped with
the observation dates used in the three selected CHMs:
2019 and 2020 (Table 1). These collective regions—
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Bay of Plenty, Waikato Reporoa and Upper Piako River,
Waikato Hamilton, Gisborne, Canterbury, Tasman, West
Coast, Northland, Wellington City, Otago-Balclutha, and
Marlborough—encompass approximately 84,000 km?
(Figure 1). These sites represent a range of ecosystems,
from dense temperate rainforests on the West Coast to
dry grasslands and shrublands in the eastern regions
like Canterbury. The North Island, with warmer
temperatures, supports primarily evergreen forests,
while the South Island’s varied climate is influenced by
the Southern Alps, creating wetter western regions and
drier eastern ones (Allen et al. 2013; Rogers et al. 2005).
Predominant land covers in these regions include
high-producing exotic grasslands, indigenous forests,
shrubland and exotic plantations (LRNZ 2020).
Elevations average 269 metres, and slopes vary from
flat to steep (>35°). These regions feature minimal
permanent snow and ice coverage, allowing for year-
round vegetation analysis. The regions considered span
approximately 34°S to 47°S latitude and 169°E to 179°E

longitude.

TABLE 1: The date of ALS capture for each region, along with the corresponding LiDAR sensors used, dominant vegetation
types, mean * standard deviation of slope and elevation above mean sea level (a.s.l.). The layer identifier (Layer ID)
on LINZ data services repository (https://data.linz.govt.nz/) for each LiDAR dataset is also indicated, including Digital

Elevation Model (DEM) and Digital Surface Model (DSM).

Region Date of ALS LiDAR Dominant Slope Elevation LINZ Layer
Sensors vegetation types (degree) (ma.s.l) ID
Bay of Plenty 27/10/2019 - Optech Galaxy Indigenous forest 10+10 350+244 105690,
24/10/2022 PRIME 105691
Waikato - Reporoa and 16/4/2019 - Optech Galaxy High-producing 545 361+178 104108,
Upper Piako River 17/4/2019 PRIME exotic grassland 104113
Waikato - Hamilton 3/11/2019 - Optech Galaxy High-producing 1+1 38+12 104772,
5/11/2019 PRIME exotic grassland 104773
Gisborne 31/12/2018 - Optech Orion High-producing 12+7 377+269 105614,
9/10/2020 H300 exotic grassland 105396
14/3/2018 - Optech Orion High-producing 244 208+143 104931,
1/5/2019 H300 exotic grassland 104936
Canterbury . ]
1/5/2020 - Optech Galaxy High-producing 1411 737472 111133,
4/2/2023 PRIME exotic grassland 111135
Tasman 28/1/2020 - Optech Galaxy Indigenous forest 1910 746x406 112854,
30/1/2022 PRIME 112856
West Coast 16/5/2020 - Optech Galaxy Indigenous forest 13+12 360+375 110163,
14/2/2022 PRIME 110164
Northland 1/12/2018 - Trimble AX60i High-producing 615 104+112 110757,
1/2/2020 exotic grassland 110911
Marlborough 10/2/2020 - Optech Galaxy Indigenous forest 18+11 676+534 105911,
15/2/2022 PRIME 105912
Wellington City 20/3/2019 - Optech Galaxy Broadleaved 8+7 115499 105023,
14/3/2020 PRIME Indigenous 105024
hardwoods, high-
producing exotic
grassland
Otago - Balclutha 16/1/2020 - Optech Galaxy High-producing 343 46x43 104763,
18/1/2020 Prime 397  exotic grassland 104764
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FIGURE 1: The study sites, along with the year of LIDAR acquisition, cover areas from the North Island to the South Island

of New Zealand.

Reference data

The New Zealand airborne LiDAR datasets were used as
a benchmark in this study to validate the three selected
global CHMs. All regional LiDAR acquisitions adhere to
the New Zealand National Aerial Lidar Base Specification,
ensuring a minimum vertical accuracy of +0.2 metres, a
horizontal accuracy of +1.0 metres, a pulse density of
> 4 pulses per square metre, and gridded at a resolution
of 1-metre (LINZ 2022). These accuracy metrics establish

the LiDAR data as a reliable benchmark for assessing the
global CHMs across New Zealand.

The study used 1-metre spatial resolution airborne
LiDAR datasets from the Land Information New Zealand
(LINZ) via the Registry of Open Data on Amazon Web
Services (AWS) STAC catalogue (LINZ n.d.). Due to
large data sizes (40-60GB) for each region, a tile-based
processing approach based on LINZ’s tiling scheme was
implemented, which was found to enhance efficiency.
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Once the DEM (Digital Elevation Model) and DSM
(Digital Surface Model) tiles were downloaded, canopy
height was calculated by subtracting the corresponding
DEM values from the DSM within each tile. This process
involved calculating both the average and maximum
canopy height values within 10 x 10 metre and
30 x 30 metre windows (corresponding to cell factors
of 10 and 30, respectively) across each tile. This
upscaling was performed to align the resolution with
the 30-metre CHM from Potapov et al. (2021) and the
10-metre CHM from Lang et al. (2023). Both average
and maximum aggregation methods were considered
for evaluating the CHMs to understand the underlying
height representation derived from the selected model’s
machine learning method and see which height estimate
is most accurate in New Zealand’s environment.
Subsequently, a continuous virtual raster file
encompassing the entire study area was generated to
provide a mosaic of all the processed CHM tiles. The
entire workflow, including data retrieval, processing,
and virtual raster creation, was automated using Python
scripting with the GDAL library (GDAL/OGR contributors
2024). A virtual raster (VRT) is a GDAL technique in
Python for merging multiple raster tiles into a single
file (GDAL/OGR contributors 2024). It virtually merges
the tiles but references them in a lightweight XML
(Extensible Markup Language) file, allowing for efficient
management of large datasets without duplicating the
files or requiring extensive computational resources.

Global canopy height models

Potapov et al. (2021)

Potapov et al. (2021) developed a global CHM by
integrating GEDI LiDAR data with Landsat optical
data at a 30-metre spatial resolution. They processed
multitemporal Landsat data spanning 1997 to 2019 to
create consistent metrics, including surface reflectance
and phenology indicators, while using only the 2019
subset of Landsat data to represent forest conditions
for that year. A median-based regression tree model
was calibrated using the GEDI'’s footprint-based relative
height metric (RH95) to predict forest height based on
Landsat metrics. The relative height (RH) represents
the height above the ground corresponding to the n-th
percentile of the LiDAR energy returned, spanning from
the top of the canopy to the signal end (Li et al. 2023).

Lang et al. (2023)

The Lang et al. (2023) 10-metre model utilised Sentinel
2 optical images in 2020 as input and trained with global
reference height derived from GEDI raw waveforms
(collected between 2019 and 2020). They utilised Level
1B/L1B GEDI waveforms to derive the RH98 height
metric as canopy-top height reference data. Their deep
learning approach - convolutional neural network (CNN)
specifically learned to extract patterns and features of
the raw satellite images that are predictive of vegetation
structure by training on GEDI data, which provides
precise measurements of canopy height at a 10-metre
resolution. This model also integrates geographic
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coordinates, enhancing its performance by allowing it to
learn spatial priors based on location-specific vegetation
characteristics.

Tolan et al. (2024)

Tolan et al. (2024) produced a 1-metre resolution
global CHM with self-supervised training of a Vision
Transformer on Maxar imagery from 2018-2020.
A dense vision transformer decoder was trained using
aerial LiDAR-derived canopy height maps from the
National Ecological Observatory Network (NEON) as
labels, linking satellite imagery features to canopy height
predictions. Furthermore, the aerial LiDAR model’s
outputs were calibrated using a separate convolutional
model trained on GEDI spaceborne LiDAR data. The
GEDI model produced scaling factors to adjust the aerial
LiDAR-based CHM predictions, thus improving global
accuracy.

All three of the global CHMs by Potapov et al. (2021),
Lang et al. (2023), and Tolan et al. (2024) used in this
study are accessible through Awesome Google Earth
Engine’s (GEE) Community Catalogue (Roy et al. 2024).
GEE is widely used in remote sensing analyses as it offers
a user-friendly platform for retrieving and processing
geospatial datasets. The analysis for Tolan et al. (2024)
was done in GEE due to the substantial data size at
a 1l-metre resolution, which made local processing
impractical. Only datasets from Potapov etal. (2021) and
Lang et al. (2023) were retrieved for local processing.
The retrieved raster data was reprojected to match
the study area’s New Zealand Transverse Mercator
coordinate system and reference LiDAR datasets (NZTM,
EPSG:2193). Bicubic interpolation was employed for
resampling, and optimal boundaries were defined based
on the study area to optimise file size and computational
requirements.

Analysis and evaluation metrics
Arandomsampleof20,000 pointswasusedtoevaluatethe
five selected land covers across the CHMs and reference
ALS datasets. This sample size was selected to ensure
statistical robustness while maintaining computational
efficiency for large-area national datasets. This random
sampling approach serves as an initial assessment by
reducing the risk of over- or under-representing any
particular class, while laying the groundwork for future
stratified sampling approaches that could target specific
vegetation categories or regions to refine the evaluation
further. The land cover data was obtained from the Land
Cover Database (v5.0) to represent varied vegetation
and land cover height across the study area: sand or
gravel, high-producing exotic grassland, mixed exotic
shrubland, indigenous forest and exotic forest (LRNZ
2020). Non-vegetated areas like sand or gravel surfaces
were first assessed to understand the model’s baseline
performance. In the case of Tolan et al. (2024), canopy
height values were extracted directly from GEE with the
sample points for the analysis.

To comprehensively assess the three selected global
CHM'’s performance against the reference ALS data, this
study employed a combination of statistical metrics,
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including calculating the residuals:

1. Bias measures the trueness of the CHM as the
average discrepancy between the CHM map and the
actual values measured by the reference ALS data.
The bias reflects the overall tendency of the CHM
map to either overestimate or underestimate canopy
height compared to the ALS data. It is calculated by
averaging the difference between predicted and
actual values across all data points. A positive bias
indicates a systematic overestimation by the model
(i.e., the model consistently predicts higher canopy
heights than the ALS measurements). Conversely,
a negative bias suggests underestimation. Ideally,
the bias should be close to zero, signifying minimal
systematic bias in the model’s predictions.

n
1
ias ”-1(M yi)
=

Where y, are the true canopy height measurements
from ALS data and J, are the canopy height
predictions from the global CHM.

2. Root Mean Squared Error (RMSE) compounds
trueness with precision as a more comprehensive
measure of the model’s accuracy. It calculates the
square root of the average squared difference
between corresponding data points. Lower RMSE
values indicate better agreement between the two
datasets.

RMSE =

where y, are the true canopy height measurements
from ALS data and f/l are the canopy height
predictions from the global CHM.

3. Finally, the coefficient of determination R? is a
statistical measure that reflects the proportion of
variance in the ALS data represented by the CHM’s
estimates. It assesses how well the model captures
the linear relationship between the predicted value
from CHM and actual canopy heights from the ALS
data. R? ranges from 0 to 1. A value of 1 indicates
a perfect fit, where the model reproduces all the
variability observed in the ALS data perfectly.
Conversely, a value of 0 suggests that the model has
no explanatory power.

X —v)?
2 i —¥)?

where y, are the true canopy height measurements
from ALS data and y, are the canopy height predictions
from the global CHM and are the mean of the true canopy
height measurements from ALS data.

R2=1-
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Results

The analysis indicated that the accuracy of the CHMs
varied depending on the type of vegetation and the
model resolution. All models generally did not capture a
full data variability with relatively low R? values. When
viewed as maps, it was revealed that the Lang 10-metre
model displayed higher height signals with greater
blurriness and showed less distinct boundaries. This
effect is likely due to sparse supervision during model
training, which limited the model’s ability to learn high-
frequency canopy height variation between adjacent
pixels, as noted by Lang et al. (2023). In contrast, the
Potapov 30-metre map exhibited more pixelation, and
the Tolan 1-metre map is almost on par with the ALS
map (Figure 2). Some height discrepancies were found
when comparing the maps because the retrieval dates
were different.

Comparison across aggregation types

The average aggregation method provided more
consistent results in the Potapov 30-metre model,
with lower RMSE and more stable estimates than the
maximum aggregation (Figures 3 and 4). This approach
was better suited for representing overall canopy
heights across all vegetation for this particular model.
Conversely, for the Lang 10-metre model, the maximum
aggregation method generally outperformed the average
aggregation in terms of RMSE across all vegetation types,
often resulting in lower values (Figures 3 and 4). Notably,
there is a big difference in the bias values. For instance, in
indigenous forests, the maximum aggregation achieved a
bias of 2.82 m. In comparison, the average aggregation
had a higher bias of 8.10 m, similar to the exotic forests
where the maximum shows 3.18 m and the average
shows 10.85 m.

Comparison across models and vegetation types
The performance of global CHMs varied across models,
resolutions, and vegetation types, with relatively low
R? values ranging from 0.15 to 0.38 and RMSE values
between 1.21 mand 13.70 m (Figures 3 and 4). Allmodels
fall short of the 1:1 line. The exotic forest class always
yields significantly higher R?, although models tend to
exhibit a marked non-linear relationship to the reference
ALS data (Figures 3 & 4). In non-vegetated areas, the
Potapov 30-metre average model and Tolan 1-metre
model were the most effective, with RMSE values below
2 m and minimal bias despite a relatively low R? value
of <0.35. Lang’s 10-metre model consistently displayed
the largest positive bias, in particular systematically
suggesting vegetation in bare areas. Both the Potapov
and Tolan models performed better in shorter vegetation
than the Lang 10-metre model. However, the Tolan
model consistently displayed negative biases, whereas
the Potapov model showed positive biases. The Potapov
30-metre model’s approach of setting observations
below a 3-metre threshold to zero is also reflected in the
plots (Figure 3).

For taller vegetation, such as indigenous and exotic
forests, the performance of these two models generally
declined, with higher RMSE and bias. The Lang 10-metre
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FIGURE 2: Comparison of Potapov 30-metre CHM, Lang 10-metre CHM, Tolan 1-metre CHM and the ALS-derived canopy
height map (fifth column), with Sentinel-2 RGB imagery as reference. Each land cover is represented by sand or gravel,
high-producing exotic grassland, mixed exotic shrubland, indigenous forest and exotic forest. The year shows the retrieval

time of each model.

maximum aggregation model generally outperformed
the Potapov 30-metre and Tolan 1-metre models for
these vegetation types in terms of R? and bias, although
the RMSE is slightly higher in exotic forests. When the
aggregation approach is comparable, the Lang model
also displayed greater heights in exotic forests than
other models, saturating around 35-40 metres. However,
the indigenous forest outperformed the exotic forest in

terms of bias and RMSE for both the Lang 10-metre and
Tolan 1-metre models.

Residual analysis was limited to exotic forests, which
exhibited the widest canopy height range and the
most linear relationship between ALS and CHM values,
allowing for clearer and more statistically meaningful
residual patterns than other land cover types. The
residuals reveal a common trend among models: both



Page 8

Ng et al. New Zealand Journal of Forestry Science (2025) 55:14

(1232W) ybiay Adoued sy (4932wW) ybiay Adoued gy (1939wW) ybiay Adoued gy (4939W) ybiay Adoued sy (4932wW) ybiay Adoued gy
0s ot o€ 0z 01 % 0s ov o€ 0z 01 % 0s or 0€ 0z 01 o 0s or o€ 0z 01 % 0S ov 0€ 0z 01 %
= —_— =
e
01 01 01 R 01 01

o
~
o
~N
o
~
o
~

]
]
(4932wW) ybiay Adoued bue
a
]
R
(4939W) ybiay Adoued nodejod
pueigniys

o
<
(4939wW) ybiay Adoued uejoL
o
<
o
<
o
<

o
<
(4939wW) ybiay Adoued nodeiod

W /Z°€ = 3SINY w9’/ = 3SINY

W 05°0- = selg W GT'€- = selg
SE0=d T L 0s 0s ve0 = o 0s
(4939W) ybiay Adoued sy (4932W) ybiay Adoued sy (4939wW) ybiay Adoued sy (4939W) ybiay Adoued sy (4932wW) ybiay Adoued sy
0S ov o€ 0z o) 0S ov o€ 0z [0} % 0s ov 0€ 0z 0t % 0S ov 0€ 0z o} o 0S oy o€ 0z 0T 9
s 0t W ot M 0T ot [0}

o
~
o
~
o
~

o
o~
(4939wW) ybiay Adoued nodeiod

(4932wW) ybiay Adoued uejo

]
]

(4932wW) ybiay Adoued bueT
]

o
M

(4232W) ybiay Adoued nodejod
puejsselb onoxe buronpoud-ybiH

w9g'z = aswy wsT'g = asiy |*7 o w 8o’z = sy |*" w 8G'z = asiy *”
wog'0- = selg wz/'9 = selg W IZ’e- = selg Wee'Q = seld
omoleom ’ mmolwmom oc mHoleom wHoleom
(4932W) 3ybi1ay Adoued sy (4939W) ybiay Adoued sy (4939W) yb1ay Adoued sy (4932W) 3ybi1ay Adoued sy (1932W) ybiay Adoued sy
0s o o€ 0z ot % 0s ot o€ 0z ot % 0S o ol 0z 0T o 0s o o€ 0z ot 0y 0s o o€ 0z 01 %

o
—
o
—
o
—
o
—

[Tt o
o
—

o
~N
o
~N
o
o~
o
~
o
~

]
3
(4939W) 1ybiay Adoued bue
3
a
]

/

/

o
<
(4932W) 3ybiay Adoued nodejod
jonelb Jo pues

o
<
(1939W) 3ybiay Adoued uejop.
g
g
(4@33w) ybiay Adoued Hue

o
<
(1939W) ybiay Adoued nodejod

W TZ'T = 3SWY W ¢/ = 3SINY W 09'v = 3SINY W GG'T = 3ISINY
W 62°0- = seld w 68 = selg w Q€¢- = seig w ¢0'0- = selg
GE'0==:d ) ) 810 = zd ) 9T'0 = zd ) GZ'0 =2z
0S < 0Ss . 0s . 0S : 0s
lojow-| wnuwixep Jeyw-Ql abelany Jsjow-QL Wwnwixep JIsjew-0g abelany Jsjow-0g

"J1J UOISSaI3a.l Jeaul] 93 SMOYS UI[ PI[OS Pal ay3 a[iym ‘syord
Ja1eas ayy ur diysuone[al T:T ay3 syuasaadad aul] paniop yae[q ay ], ‘(Asuap 1amoj) mo[[eh pue usaid 03 (A1suap ysiy) anjq wo.y Suruonisue) Aysuap eyep juasaldal sInojod
JUI0d 'S}[NSaJ JLIdW [BINISIIES 119Y] YIIM Suo[e ‘(Sqnays d110xs paxiw pue pue[sseld o1nnoxa gunnpoad-y3iy) uoneiadaa 110ys pue ([9aei3 10 pues) seale paleldadaa-uou IaA0
sjuawaInseaw Y319y Adoued paALIap-STY YUM (a1}owi-T pue adjow-(T ‘@13dwW-(E) S[PPOW SNoLIeA SSOIo. sajewnss 1ysiay Adoued Surredwod joid 1933e3s A)1sua( € YNOIA



Page 9

Ng et al. New Zealand Journal of Forestry Science (2025) 55:14

(1939wW) ybiay Adoued Sy (4939W) ybiay Adoued sy (4939W) 1ybiay Adoued sy (4932wW) ybiay Adoued sy (1939wW) ybiay Adoued sy
0S or o€ 0z 0t 0 0s or o€ 0z 01 0 0s 14 0€ 0z o1 0 0s or o€ 0z 0t 0 0s or o€ 0z 0t 0

o
o
o

(4919W) 3yb1ay Adoued nodejod

—
—_—

)
—

t
o
—

o
~
o
~

|

o
oM

1S8104 2110X3

o
<

o
<
(1239wW) 1ybiay Adoued nodeiod

W TE0T = ISWYH W OLET = 3ISWY W ey ¢T = 3SY

(1239W) 3ybiay Adoued uejoL
(49313W) ybiay Adoued Hue
(49319wW) 3ybiay Adoued bue

w99'e- = seld wGg'ol = seld weg’s- = seld
L2°0 =24 os TE0 =2 os 0€'0 =24 oc oc
(1939wW) 3ybiay Adoued sy (4932wW) 3ybisy Adoued sy (4939W) 3ybiay Adoued sy (4932wW) ybiay Adoued 5y (1939wW) 3ybiay Adoued sy
0S or o€ 0z ot 0 0s 4 o€ 0z 01 0 0s 14 0€ 0z 01 0 0s 14 o€ 0z ot 0s ov o€ 0z ot %

o
S
o

(4239wW) 3ybiay Adoued uejo

et
—
o
—
o
—
o
—

(4939W) 3yb1ay Adoued nodejod
3

(4932wW) ybiay Adoued nodeirod
1S8104 snouabipu|

——es

o
~
o
~
o
~
o
~N
o
~

e

(1939W) 1ybiay Adoued bHueT
(4939wW) ybiay Adoued bueT

o€ 0€ 0€ — 0€ [o]3
w z0'8 = 35wy |*7 weg, =3swy |7 ov w € 0T = 3sy |*7 ov
w/p'e- = seig wzg'z = selg W 0g°9- = selg
610 = <Y oc 02°0 = 2 oc ’ os p 9T°'0 = <Y os ’ oc
J9)oW-| WwnNWIXep Jeyw-0| abelany Jeyow-Ql WnWwixep Jsew-0g abelany Jejew-0g

"J1J UoISsa.dal Jeaul] a3 SMOYS aul[ PI[OS Pal ay3 a[Iym ‘syord J1a13e3s oy ul diysuonefal 1:T ay) sjuasaldal aul] panop 3oe[q ay,[, '(£11suap 1amo[) Mo[[oh pue usais 0}
(A1susp y31y) anjq wo.ay uruonisuel) A}susap ejep juasatdal SInoj0d JUI0 *SINSaI ILIIDW [BINSIIEIS 11943 Y3IM Fuo[e ‘(35a.10] D110Xd pue 15a.10j snouadipul) uoneladaa [[el 1aao
sjuawaInseaw 319y Adoued paALIdp-STyY YHM (8119W-T pPue a1}dW-( T ‘9119W-(E) S[OPOW SNOLIBA SSOId Sa1ewnsa Jysay Adoued Surredwood jo1d 1a13eds Aisua( ¥ TYNOIA



Ng et al. New Zealand Journal of Forestry Science (2025) 55:14

Residuals of CHM 30-meter Average

Page 10

Residuals of CHM 30-meter Maximum

o Mean
s Median
30 ©  Outliers

Residuals (meter)
°
>

Residuals (meter)

© Mean
Median
30 i °  Outliers

HEE——-

|
S

4 8 12 16 20 24 2
ALS canopy height (meter)

Residuals of CHM 10-meter Average

4 8 12 16 20 24 28 32 36 40 44 48 52 56
ALS canopy height (meter)

Residuals of CHM 10-meter Maximum

. ©  Mean
R Median
30 L °  Outliers

©  Mean
Median
30 { — . °  Outliers

Residuals (meter)
eoN
5 B
. Rt

|
N
S

Residuals (meter)

%T? i

4 8 12 16 20 24 28 32 36 40 44
ALS canopy height (meter)

Residuals of CHM 1-meter

©  Mean
Median
3071, °  Outliers

Residuals (meter)
°

i
6

a4 8 12 16 20 24 32
ALS canopy height (meter)

|
y '
gy

a4 8 12 16 20 24 28 32 36 .40 44 } 48 52 56
ALS canopy height (meter)

FIGURE 5: Residuals of canopy height estimates for exotic forests across various models at 2-metre intervals.

the Potapov 30-metre average and maximum models
tend to overestimate canopy heights in the lower to
mid ranges (until 20-24 m) and underestimate them as
heights increase beyond that (Figure 5). Similarly, the
Lang 10-metre models show overestimation at shorter
canopy heights, transitioning to underestimation for
taller canopies around 24-32 m. In contrast, the Tolan
1-metre model performed differently, minimising
overestimation at lower heights (<8 m) but increasing
underestimation for medium to tall canopies.

Discussion

This study evaluated the accuracy of three global canopy
height models (CHMs)—Potapov et al. (30-metre), Lang
et al. (10-metre), and Tolan et al. (1-metre)—across
varied New Zealand vegetation types, using ALS data as
a benchmark. The findings reveal distinct performance
patterns for each model and provide insight into their
suitability for forest carbon accounting and management
applications.

Potapov et al. (2021) model

Potapov et al. (2021) developed a 30-metre global CHM
using regression tree ensembles trained on Landsat
spectral data and GEDI RH95 height metrics. Our
results revealed that the average aggregation approach
produced more stable estimates and lower RMSE values
than maximum aggregation. The results aligned with
the model’s reliance on a regression tree ensemble that
outputs median values. However, this design limits the
model’s ability to accurately represent the shortest and
tallest forest structures, a limitation further exacerbated
by the medium resolution of Landsat data (Potapov et al.
2021; Hansen et al. 2016).

In examining non-vegetated areas, the model
exhibited negligible bias (-0.02 m) and low RMSE values
(below 2 m), suggesting that the model is well-calibrated
to detect and correctly classify near-zero canopy heights.
Their integration of phenology-based differentiation
and temporal metrics allows accurate classification,
with non-vegetated areas most likely identified through
static reflectance and low NDVI (Normalized Difference
Vegetation Index); while dynamic seasonal changes and
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peak productivity characterise vegetated areas (Potapov
et al. 2021). The model’s baseline performance implies
that deviations observed in vegetated regions may
indicate specific model limitations related to canopy
complexity rather than systemic calibration issues.

Inherent challenges associated with using GEDI
RH95 height metrics exist in sparse and multilayered
vegetation areas. In our study, the Potapov 30-metre
model exhibited small positive biases (<3 m) in the
average aggregation method for high-producing exotic
grasslands and mixed exotic shrublands. This result is
consistent with the model’s reliance on GEDI's RH95
metric, which can overestimate canopy heights in
sparsely vegetated areas due to the tendency to include
non-canopy returns (Zhu et al. 2022; Yu et al. 2024). The
higher pulse density (=4 points/m?) and fine resolution
(1 metre) of New Zealand ALS data likely exaggerated this
overestimation by capturing detailed canopy structures
and delineating non-canopy elements that RH95 may
mistakenly include. This positive bias also aligns with
Potapov’s visual analysis findings of overestimation in
grasslands, particularly in New Zealand and Lesotho,
though their statistical evaluation suggested an overall
underestimation due to the disproportional sampling of
tall tropical forests used in their ALS validation and their
regression tree approach.

For taller vegetation, such as indigenous and exotic
forests, the Potapov model struggled to accurately
represent canopy heights, with higher RMSE and positive
bias than shorter vegetation types shown in our study.
The maximum aggregation method amplified these
discrepancies by showing underestimation and higher
RMSE, revealing the model’s limitations in capturing
peak canopy heights. Dorado-Roda et al. (2021)
observed underestimation biases when comparing
RH95-derived heights to ALS data for Mediterranean
oak and pine forests. Their approach differed from
ours, as they normalised ALS data to 1 point/m? and
applied a 12.5-metre buffer around GEDI footprints.
These differences underscore how ALS data resolution
and processing methods can shape the interpretation of
RH95’s performance, with finer ALS resolutions exposing
overestimation in tall vegetation and normalised ALS
datasets highlighting underestimation under similar
vegetation height.

Despite Potapov’s relative advantage in shorter
vegetation compared to the Lang 10-metre model, it was
still outperformed by the Tolan 1-metre model. Moreover,
its limitations in capturing taller canopy heights and
vegetation complexity underscore the need for nuanced
application and further refinement. The Potapov
30-metre model’s overall strengths lie in its stability and
utility for large-scale monitoring, particularly in non-
vegetated and shorter vegetation types. By leveraging
its capability for temporal monitoring, the model holds
promise for advancing consistent global forest structural
analysis and carbon stock monitoring. Currently, the
model is only suited for a generalised assessment of the
New Zealand ecosystem and is not recommended for a
detailed level carbon stock assessment.
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Lang et al. (2023) model

The Lang et al. (2023) 10-metre canopy height model
employs a window-based deep learning approach that
leverages Sentinel-2 spectral and textural data alongside
GEDI RH98 metrics. By training CNN with sparse
supervision from GEDI LIDAR-derived canopy top height
data, the model effectively incorporates global spectral-
textural information to predict canopy heights. However,
like other global models, Lang-CHM’s performance is
influenced by the structural diversity of vegetation and
the limitations inherent in its design and training data.
To evaluate the Lang 10-metre model’s baseline
performance, the model exhibited higher bias and
RMSE for bare areas. Their window-based approach
could inadvertently incorporate signals from adjacent
vegetation into the estimation in areas that suggest
minimal or zero vegetation. For example, even small
patches of low-lying vegetation or shrubs near bare
surfaces might influence the overall signal within the
window, leading to inflated height estimates. These
challenges might be compounded by the reliance on
GEDI RH98 metrics. The wide pulse width of GEDI’s
laser signals (approximately 4.5 metres) can inflate RH
values, misrepresenting surface height (Dubayah et al.
2020). While Lang et al. (2023) mitigated this limitation
by using RH98 instead of RH100, residual inaccuracies
persist, introducing baseline height signals even in non-
vegetated regions (Li et al. 2023). As seen from our
results, these inflated values likely propagate through
short and tall vegetation estimates, creating systematic
biases across short and tall vegetation.

Interestingly, the Lang model performed relatively
better for New Zealand’s indigenous forests than exotic
plantations despite the indigenous forests’ unique
vegetation structure. This finding contrasts with
expectations as managed exotic forests, especially the
dominant species radiata pine (P radiata), are widely
distributed across other continents (North America) and
are likely well-represented in the training data used for
global models (Lang et al. 2022). This observation aligns
withthebroaderunderstanding of global models’reliance
on generalised training data and GEDI’s characteristics.
As Schwartz et al. (2024) noted, GEDI-based models
tend to perform better in regions with dense, diverse
canopy layers because RH98 metrics effectively capture
upper canopy features. In indigenous forests, the diverse
vertical layering might inadvertently align with the Lang
model’s emphasis on spectral-textural inputs, explaining
its improved performance. For exotic forests in the Lang
model, the relatively higher bias and RMSE might have
resulted from spectral similarities between canopy and
understorey elements in plantation settings, which the
model cannot distinguish due to its reliance on training
datasets generalised to different biomes and forest types.
This challenge reflects findings in similar studies, such
as Fayad et al. (2024), where the uniformity of plantation
forests posed difficulties for global models trained on
diverse vegetation types.

This study also confirms that the Lang 10-metre
model’'s performance improves significantly when
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maximum aggregation methods are applied, particularly
for taller canopies. Their use of GEDI RH98—
a height metric particularly suited for peak height
approximation—enhances alignment with maximum
height measurements (Besic et al. 2024). This height
metric contrasts with GEDI RH95-based methods, such
as those by Potapov et al. (2021), which tend to yield
lower canopy height estimates and introduce slight
underestimation biases for tall forests (Kacic et al
2023). For example, in exotic forests, the bias from the
Lang 10-metre model was notably lower with maximum
aggregation (3.18 m) compared to average aggregation
(10.85 m). This observation is consistent with Lang’s
approach as they had already explicitly addressed the
saturation effect on tall canopies, thus reflecting the
expected results of our findings.

However, despite these improvements, Lang et al.
(2023) revealed error and low bias in non-vegetated
and low-height areas, such as deserts and temperate
grasslands. They reported a performance decline in
denser or taller vegetation types, such as mangroves,
tundra, and tropical coniferous forests, where it exhibits a
consistent positive bias, with overestimations averaging
approximately 2.5 metres. Our findings support
these observations, with the Lang 10-metre model
overestimating both short and tall vegetation but better
estimates in tall vegetation. Similar overestimations have
been observed in other studies—Moudry et al. (2024),
Torresani et al. (2023), Tsao et al. (2023), and Alvites et
al. (2024). Moudry et al. (2024) found that the transition
between forest and non-forest remains unclear. Lang
et al. (2023) acknowledged that the trade-off in their
model’s design for improving the performance of tall
canopies caused a slight overestimation of low canopy
heights. Our findings suggest that this trade-off is quite
pronounced and may have also included the systematic
bias observed in the GEDI system, as previously
discussed.

Moudry et al. (2024) evaluated Lang, Potapov and
Tolan CHMs in Mount Richmond Forest stratified by
height bins. For the 20-30 m class, they found a Lang
bias of +1 m (RMSE 5 m), Potapov bias of -5 m (RMSE
9 m) and Tolan bias of -11 m (RMSE 12 m). In our
national-scale indigenous forest analysis, the Lang 10
m (maximum) model exhibited a bias of +2.82 m (RMSE
7.53 m), the Potapov 30 m (average) model +5.37 m
(RMSE 8.30 m), and the Tolan 1 m model -3.47 m (RMSE
8.02 m). Although absolute biases are somewhat larger
in our national-scale analysis, the direction of errors is
consistent: Lang and Potapov tend to overestimate mid-
height canopies, while Tolan underestimates. Likewise,
all three models increasingly misestimate heights
beyond ~30 m. This agreement between site-specific
and nationwide assessments reinforces the need for
caution when applying these CHMs to forest stands
within New Zealand.

Overall, the Lang et al. (2023) model demonstrates
considerable strengths in estimating taller canopies
due to its reliance on GEDI RH98 metrics and advanced
deep-learning techniques. However, its systematic
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overestimation of low canopy heights, compounded by
inherent limitations in the GEDI system and spectral-
textural ambiguities, suggests that the model could be
more suited for applications focused on taller canopies.
Localised adjustments or alternative models may be
required for regions with significant short vegetation
cover to address the inherent biases observed.

Tolan et al. (2024) model

Tolan et al. (2024) developed a global canopy height
map at 1-metre resolution using high-resolution Maxar
satellite imagery and airborne LiDAR-derived canopy
height models. They employed a self-supervised vision
transformer and a deep-learning approach to estimate
canopy height from RGB satellite imagery. These
techniques enable the model to provide unattainable
detailed spatial insights with coarser-resolution models
like those of Potapov et al. (2021) and Lang et al. (2023).

The Tolan model consistently outperformed the other
CHMs in non-vegetated and shorter vegetation areas,
achieving lower RMSE and bias values in our study.
Their results indicate a strong baseline performance
comparable to that of Potapov et al. (2021). Moudry
et al. (2024) noted its high sensitivity in capturing the
transitions between forest and grassland, emphasising
its suitability for applications that demand precision.
This capability aligns with findings from Wagner et
al. (2024), demonstrating the model’s robustness in
submetre-scale canopy height mapping for California.
The model's ability to minimise overestimation in
shorter canopies compared to other CHM underscores its
suitability for accurately estimating biomass in regions
where precision in capturing minor height variations is
critical.

However, challenges remain for the Tolan 1-metre
model in estimating taller canopies despite displaying a
better performance than Potapov’s model. Our analysis
and observations by Fogel et al. (2024) found that the
model tended to underestimate canopy heights in taller
forests despite its high resolution. Moreover, Bermudez
et al. (2024) found underestimation across the entire
data range for Tolan’s model in their study, and Wagner
et al. (2024) reported underestimation for tall trees
>45 m. Such underestimation suggests that further
refinement in training data to include wider biomes or
adjustments in the model’s loss functions could improve
its accuracy for tall canopy environments (Wagner et al.
2024; Lang et al. 2023).

Despite these limitations, the Tolan et al. (2024)
model represents a global high-resolution canopy height
mapping benchmark. Its fine spatial detail and accuracy
for shorter canopies position it as a transformative tool
for vegetation monitoring, with significant implications
for national carbon accounting frameworks and
biodiversity assessments. In New Zealand, where
substantial expanses of native and exotic grasslands and
shrublands dominate the landscape, the model provides
a promising pathway to advance both policy and practice
in managing and conserving these critical ecosystems.
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Limitations and opportunities

This study did not investigate the impact of GEDI
geolocation errors, slope, and terrain variations on
global CHM measurements. Previous studies (Quirds
et al. 2021; Moudry et al. 2022; Lang et al. 2023) have
highlighted these factors as significant sources of error
in CHMs. For instance, GEDI geolocation uncertainties
could result in canopy height estimates being off by
approximately 2 metres (Li et al. 2023). Additionally,
GEDI’s larger footprint (25 metres) is prone to bias
on steep slopes and underperforms in fragmented
landscapes like mountainous regions, reducing data
accuracy and spatial representation (Mandl et al.
2023). Developing geolocation optimisation processes
with high-precision ALS data could reduce these
systematic errors (Tang et al. 2023). While Lang et al.
(2023) considered geolocation uncertainty unlikely to
hinder their model’s utility, its implications for local-
scale applications like New Zealand’s forests remain
underexplored.

A significant limitation in this study stems from
temporal discrepancies between ALS acquisition and
global CHM retrieval times, with differences of up
to *2-3 years across the 11 regions analysed. Such
temporal mismatches can lead to inconsistencies in
canopy height comparisons, particularly in fast-growing
or structurally dynamic ecosystems like exotic forests.
Incorporating species-specific growth models could help
adjust ALS canopy heights to match CHM acquisition
dates. For instance, height-age curves tailored to P
radiata or other dominant species could account for
expected growth over the temporal gap, enabling more
accurate comparisons (van der Colff & Kimberley 2013).
Integrating species-specific growth models with regional
exotic forest descriptions could support more targeted
and locally calibrated temporal adjustment methods.
Another fundamental limitation is the restricted spatial
distribution of training data used in the Lang et al
(2023) model. As global models often rely on training
datasets that emphasise a few specific biomes, they
may not fully capture unique structural attributes of
local vegetation, such as those found in New Zealand.
Spatial misalignments between the global CHMs and
ALS-derived canopy height maps could also contribute
to sampling uncertainty. Although visual inspections
indicated overall alignment, small discrepancies,
particularly for the GEE-processed Tolan model, may
affect point-based canopy height comparisons.

Future efforts could incorporate terrain and
environmental factors into the analysis to address
these limitations and assess these models more
comprehensively. For instance, incorporating slope,
elevation, and other topographical variables could
enhance the study to account for terrain-induced
variations in canopy height accuracy assessment (Besic
et al. 2024; Li et al. 2024b). The random sampling
approach in this study did not adequately capture
the height variation in indigenous forests, where tree
growth tends to be more stable than exotic plantations.
A stratified sampling design targeting specific growth
stages and vegetation characteristics could improve
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model validation, providing deeper insights into its
application to areas where ALS data is unavailable in
New Zealand.

Our analysis revealed non-linear relationships
between CHMs and ALS data for all land cover
types, suggesting potential improvements through
mathematical transformations. For exotic forests, where
the relationship shows a curved trend, applying non-
linear transformations to Lang-CHM values could better
capture height variations, reduce bias, and improve
model fit. Testing various transformations could help
refine the regression model, particularly for vegetation
types with significant height variability.

New Zealand’s extensive, high-resolution ALS
datasets provide an excellent opportunity to enhance
global CHMs. Among all global CHMs, Lang et al. (2023)
stand out by providing open access to their code and
model, offering valuable opportunities to improve its
performance by reducing bias and capturing the unique
structural characteristics of New Zealand’s forests. This
approach could facilitate the development of a national-
level canopy height map at a 10-metre resolution, which
could subsequently be translated into a carbon stock
map similar to those produced by Lang et al. (2021).

While our results indicate that all global CHMs show
notable biases and relatively low R? values, reflecting
limited ability to fully capture canopy height variability,
the models still exhibit distinct strengths depending
on vegetation structure and data aggregation methods.
Therefore, these CHMs could be useful as complementary
tools for New Zealand’s forest monitoring and carbon
accounting efforts, especially where large-scale updates
are needed. However, users should be aware of the
potential for substantial biases, and consider these
uncertainties when applying the models in policy or
compliance contexts. Importantly, our findings reinforce
the need for locally developed and calibrated models
that can better reflect New Zealand’s various vegetation
structures and provide the accuracy required for
regional-scale applications such as ETS reporting.

An additional avenue for exploration involves
harmonising spatial resolutions for a more equitable
comparison between CHMs. Aggregating Lang’s
10-metre and Tolan’s 1-metre CHMs to the coarser
30-metre resolution of Potapov’s model could offer
valuable insights. This harmonised comparison may
reveal statistical benefits that highlight the relative
strengths of higher-resolution CHMs when evaluated on
an equivalent spatial scale. Such an approach could help
disentangle the effects of resolution from the underlying
model design, providing a clearer picture of their relative
performance across varied vegetation types.

In summary, the analysis highlighted distinct strengths
across the three models. The Potapov 30-metre model
provided reliable general canopy height estimates at
broad scales, while the Lang 10-metre model offered
improved performance in taller canopies but exhibited
challenges in low-vegetation areas. The Tolan 1-metre
model aligned well with ALS data for shorter vegetation,
presenting potential for fine-scale applications.
Recognising these complementary strengths is essential
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when selecting a model for a given spatial scale or
management objective.

Conclusions

The analysis revealed that the Potapov 30-metre model
is well-suited for a broad-scale general canopy height
assessment due to its reliance on a median-based
regression tree ensemble and coarser resolution that
limits its applicability for detailed assessments. The
Lang 10-metre model, while excelling in estimating taller
canopies through its advanced deep learning approach,
struggled with non-vegetated areas and short vegetation,
reflecting the trade-offs inherent in its design. The
Tolan 1-metre model demonstrated strong alignment
with ALS data for shorter vegetation, highlighting its
potential for fine-scale vegetation mapping, though its
underestimation of taller canopies warrants further
caution.

These findings emphasise the strengths and
limitations of each CHM, illustrating the importance
of tailored approaches for vegetation-specific
applications. At present, global CHMs are best suited
as complementary tools for carbon accounting rather
than replacements for existing methodologies. While
they provide valuable large-scale insights, their current
limitations require careful consideration when applied
to local-scale assessments. By addressing the limitations
and capitalising on opportunities for refinement,
insights on each global CHM can improve in New
Zealand’s context and play a critical role in advancing
forest monitoring, enhancing carbon accounting, and
supporting sustainable forest management within the
broader context of climate change mitigation efforts.

List of abbreviations

ALS - Airborne Laser Scanning

AWS - Amazon Web Services

CHM - Canopy Height Model

CNN - Convolutional Neural Network

DEM - Digital Elevation Model

DSM - Digital Surface Model

EPSG - European Petroleum Survey Group

ETS - Emissions Trading Scheme

GEE - Google Earth Engine

GEDI - Global Ecosystem Dynamics Investigation
IPCC - Intergovernmental Panel on Climate Change
LiDAR - Light Detection and Ranging

LINZ - Land Information New Zealand

L1B - Level 1B (GEDI Data Processing Level)
NDVI - Normalized Difference Vegetation Index
NEON - National Ecological Observatory Network
NZTM - New Zealand Transverse Mercator

RH - Relative Height

RMSE - Root Mean Square Error

R? - Coefficient of Determination

SAR - Synthetic Aperture Radar

STAC - SpatioTemporal Asset Catalog

TIFF - Tagged Image File Format

VRT - Virtual Raster

XML - Extensible Markup Language

Page 14

Authors’ contributions

Sue Kee participated in collecting and processing the
ALS data and global CHMs, producing maps, conducting
statistical analysis, and writing the manuscript. Todd
and Pascal contributed to the study design, assisted in
interpreting the data, and reviewed the manuscript.

Competing interests
The authors declare no competing interests.

Acknowledgements

The authors acknowledge the National School of
Surveying, University of Otago, for supporting this
research through a publishing bursary.

References

Allen, R.B., Bellingham, PJ., Holdaway, R.J., & Wiser, S.K.
(2013). New Zealand’s indigenous forests and
shrublands. Ecosystem services in New Zealand-
condition and trends. Lincoln, New Zealand:
Manaaki Whenua Press, pp. 34-48.

Alvites, C., O’Sullivan, H., Francini, S., Marchetti, M.,
Santopuoli, G., Chirici, G, & Bazzato, E. (2024).
High-resolution = canopy  height  mapping:
Integrating NASA's Global Ecosystem Dynamics
Investigation (GEDI) with multi-source remote
sensing data. Remote Sensing, 16(7), 1281. https://

doi.org/10.3390/rs16071281

Besic, N., Picard, N. Vega, C., Hertzog, L. Renaud,
J.P, Fogel, E, Schwartz, M., Pellissier-Tanon, A,
Destouet, G. Mortier, F, Planells-Rodriguez, M.,
& Ciais, P. (2024). Remote sensing-based high-
resolution mapping of the forest canopy height:
some models are useful, but might they be even
more if combined? Geoscientific Model Development

Discussions, 2024, 1-26. https://doi.org/10.5194/
gmd-2024-95

Bermudez, ]., Rogers, C., Sothe, C,, Cyr, D., & Gonsamo,
A. (2024). A deep learning approach to estimate
canopy height and uncertainty by integrating
seasonal optical, SAR and limited GEDI LiDAR
data over northern forests. arXiv preprint
arXiv:2410.18108

Brown, S. (2002). Measuring carbon in forests: current
status and future challenges. Environmental
pollution, 116(3), 363-372.  https://doi.
org/10.1016/S0269-7491(01)00212-3

Coomes, D.A, Safka, D., Shepherd, J., Dalponte, M., &
Holdaway, R. (2018). Airborne laser scanning
of natural forests in New Zealand reveals the
influences of wind on forest carbon. Forest

Ecosystems, 5, 1-14. https://doi.org/10.1186/
s40663-017-0119-6

Dorado-Roda, 1., Pascual, A., Godinho, S., Silva, C.A,
Botequim, B., Rodriguez-Gonzalvez, P, Gonzalez-


https://doi.org/10.3390/rs16071281
https://doi.org/10.3390/rs16071281
https://doi.org/10.5194/gmd-2024-95
https://doi.org/10.5194/gmd-2024-95
https://doi.org/10.1016/S0269-7491(01)00212-3
https://doi.org/10.1016/S0269-7491(01)00212-3
https://doi.org/10.1186/s40663-017-0119-6
https://doi.org/10.1186/s40663-017-0119-6

Ng et al. New Zealand Journal of Forestry Science (2025) 55:14

Ferreiro, E., & Guerra-Hernandez, J. (2021).
Assessing the accuracy of GEDI data for canopy
height and aboveground biomass estimates in
Mediterranean forests. Remote Sensing, 13(12):
2279. https://doi.org/10.3390/rs13122279

Dubayah, R, Blair, ].B., Goetz, S., Fatoyinbo, L., Hansen, M.,
Healey, S., & Silva, C. (2020). The global ecosystem
dynamics investigation: High-resolution laser
ranging of the Earth’s forests and topography.
Science of Remote Sensing, 1: 100002. https://doi.
org/10.1016/j.srs.2020.100002

Fayad, I, Ciais, P,, Schwartz, M., Wigneron, ].P,, Baghdadi,
N, de Truchis, A, dAspremont, A., Frappart, F,
Saatchi, S., Sean, E., Pellissier-Tanon, A., & Bazzi,
H. (2024). Hy-TeC: a hybrid vision transformer
model for high-resolution and large-scale mapping
of canopy height. Remote Sensing of Environment,

302, 113945. https://doi.org/10.1016/j.
rse.2023.113945

Fogel, F, Perron, Y, Besic, N., Saint-André, L., Pellissier-
Tanon, A., Schwartz, M., & Ciais, P. (2024). Open-
canopy: A country-scale benchmark for canopy
height estimation at very high resolution. arXiv
preprint arXiv:2407.09392

GDAL/OGR contributors. (2024). GDAL/OGR geospatial
data abstraction software library. Open Source
Geospatial Foundation. Retrieved February 14,

2024, from https://gdal.org

Hansen, M.C., Potapov, PV, Goetz, S.J.,, Turubanova, S,
Tyukavina, A., Krylov, A., Kommareddy, A., & Egorov,
A.(2016). Mapping tree height distributions in Sub-
Saharan Africa using Landsat 7 and 8 data. Remote
Sensing of Environment, 185, 221-232. https://doi.

rg/10.1016/j.rse.2016.02.02

Hunt, C.A. (2009). Carbon sinks and climate change:
forests in the fight against global warming.
Edward Elgar Publishing. https://doi.

org/10.4337/9781849802109

IPCC. (2021). Climate Change 2021: The Physical Science
Basis. Contribution of Working Group I to the Sixth
Assessment Report of the Intergovernmental Panel
on Climate Change (V. Masson-Delmotte, P. Zhai,
A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud,
Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K.
Leitzell, E. Lonnoy, ].B. R. Matthews, T.K. Maycock,
T. Waterfield, O. Yelekei, R. Yu, & B. Zhou, Eds.).
Cambridge University Press.

Kacic, P, Thonfeld, F,, Gessner, U., & Kuenzer, C. (2023).
Foreststructure characterization in Germany: novel
products and analysis based on GEDI, sentinel-1
and sentinel-2 data. Remote Sensing, 15(8): 1969.
https://doi.org/10.3390/rs15081969

Kohler, P, & Huth, A. (2010). Towards ground-truthing
of spaceborne estimates of above-ground life
biomass and leaf area index in tropical rain forests.
Biogeosciences, 7(8), 2531-2543. https://doi.

rg/10.5194 /bg-7-2531-201

Page 15

Land Resource Information System (LRIS). (n.d.).
LCDB v5.0 - Land Cover Database version 5.0,
Mainland New Zealand. LRIS Portal. Retrieved

February 2, 2024, from https://Iris.scinfo.org.
nz/layer/104400-lcdb-v50-land-cover-database-

Lang, N., Schindler, K., & Wegner, ].D. (2021). High carbon
stock mapping at large scale with optical satellite
imagery and spaceborne LIDAR. arXiv preprint
arXiv:2107.07431

Lang, N., Kalischek, N., Armston, ], Schindler, K., Dubayabh,
R., & Wegner, ].D. (2022). Global canopy height
regression and uncertainty estimation from GEDI
LIDAR waveforms with deep ensembles. Remote
Sensing of Environment, 268: 112760. https://doi.

org/10.1016/j.rse.2021.112760

Lang, N, Jetz, W, Schindler, K., & Wegner, ].D. (2023). A
high-resolution canopy height model of the Earth.
Nature Ecology & Evolution, 7(11), 1778-1789.
h : i.org/10.1 41 -023-02206-

Lee, Y., Beck, M., & Philips, R. (2023). About the elevation
programme. Toiti Te Whenua Land Information
New Zealand. Retrieved March 4, 2024, from
h : rymaps.arcgis.com ri 2967
2c64664aebce8cal54c5¢c49

Li, W, Niu, Z, Shang, R, Qin, Y, Wang, L., & Chen, H.
(2020). High-resolution mapping of forest canopy
height using machine learning by coupling
ICESat-2 LiDAR with Sentinel-1, Sentinel-2 and
Landsat-8 data. International Journal of Applied
Earth Observation and Geoinformation, 92: 102163.
https: i.org/10.1016/j.jag.2020.1021

Li, X., Wessels, K., Armston, ]., Hancock, S., Mathieu, R,,
Main, R., and Scholes, R. (2023). First validation of
GEDI canopy heights in African savannas. Remote
Sensing of Environment, 285: 113402. https://doi.
org/10.1016/j.rse.2022.113402

Li, S, Zhu, Z, Deng, W,, Zhu, Q. Xu, Z., Peng, B., Guo,
E, Zhang, Y, & Yang, Z. (2024). Estimation of
aboveground biomass of different vegetation types
in mangrove forests based on UAV remote sensing.
Sustainable Horizons, 11: 100100. https://doi.

org/10.1016/j.horiz.2024.100100

Li, Y, Lu, D, Ly, Y, & Li, G. (2024b). Examining the impact
of topography and vegetation on existing forest
canopy height products from ICESat-2 ATLAS/
GEDI Data. Remote Sensing, 16(19): 3650. https://
doi.org/10.3390/rs16193650

Lim, K., Treitz, P, Wulder, M., St-Onge, B., & Flood, M.
(2003). LiDAR remote sensing of forest structure.
Progress in Physical Geography, 27(1), 88-106.
https://doi.org/10.1191/0309133303pp360ra

Lorenz, K, & Lal, R. (2010). The importance of
carbon sequestration in forest ecosystems.
In Carbon sequestration in forest ecosystems


https://doi.org/10.3390/rs13122279
https://doi.org/10.1016/j.srs.2020.100002
https://doi.org/10.1016/j.srs.2020.100002
https://doi.org/10.1016/j.rse.2023.113945
https://doi.org/10.1016/j.rse.2023.113945
https://gdal.org
https://doi.org/10.1016/j.rse.2016.02.023
https://doi.org/10.1016/j.rse.2016.02.023
https://doi.org/10.4337/9781849802109
https://doi.org/10.4337/9781849802109
https://doi.org/10.3390/rs15081969
https://doi.org/10.5194/bg-7-2531-2010
https://doi.org/10.5194/bg-7-2531-2010
https://lris.scinfo.org.nz/layer/104400-lcdb-v50-land-cover-database-version-50-mainland-new-zealand/
https://lris.scinfo.org.nz/layer/104400-lcdb-v50-land-cover-database-version-50-mainland-new-zealand/
https://lris.scinfo.org.nz/layer/104400-lcdb-v50-land-cover-database-version-50-mainland-new-zealand/
https://doi.org/10.1016/j.rse.2021.112760
https://doi.org/10.1016/j.rse.2021.112760
https://doi.org/10.1038/s41559-023-02206-6
https://storymaps.arcgis.com/stories/59af2967e2c64664aebce8ca154c5c49
https://storymaps.arcgis.com/stories/59af2967e2c64664aebce8ca154c5c49
https://doi.org/10.1016/j.jag.2020.102163
https://doi.org/10.1016/j.rse.2022.113402
https://doi.org/10.1016/j.rse.2022.113402
https://doi.org/10.1016/j.horiz.2024.100100
https://doi.org/10.1016/j.horiz.2024.100100
https://doi.org/10.3390/rs16193650
https://doi.org/10.3390/rs16193650
https://doi.org/10.1191/0309133303pp360ra

Ng et al. New Zealand Journal of Forestry Science (2025) 55:14

(pp- 45-79). Springer, Dordrecht. https://doi.
org/10.1007/978-90-481-3266-9_6

Mandl, L., Stritih, A., Seidl, R., Ginzler, C., & Senf, C.
(2023). Spaceborne LiDAR for characterizing
forest structure across scales in the European Alps.
Remote Sensing in Ecology and Conservation, 9(5),
599-614. https://doi.org/10.1002 /rse2.330

Ministry for the Environment. (2024). About the New
Zealand emissions trading scheme. Retrieved July

2, 2024, from https://environment.govt.nz/what-
government-is-doing/areas-of-work/climate-
change/ets/about-nz-ets/

Moudry, V., Gabor, L., Marselis, S., Pracn3, P, Bartak, V.,
Prosek, J., Navratilova, B., Novotny, J., Potlickovj,
M., Gdulova, K., Crespo-Peremarch, P, Komarek,
]., Malavasi, M., Rocchini, D., Ruiz, L.A., Torralba, J.,
Torresani, M., Cazzolla Gatti, R., & Wild, ]J. (2024).
Comparison of three global canopy height maps
and their applicability to biodiversity modeling:
Accuracy issues revealed. Ecosphere, 15(10):
€70026. https://doi.org/10.1002/ecs2.70026

Moudry, V., Gdulova, K., Gabor, L., Sarovcova, E., Bartak,

V., Leroy, F, §patenkové, 0. Rocchini, D., & Prosek,

J. (2022). Effects of Environmental Conditions on

ICESat-2 Terrain and Canopy Heights Retrievals

in Central European Mountains. Remote Sensing

of Environment 279: 113112. https://doi.
rg/10.1016/j.rse.2022.113112

Pearse, G. D., Jayathunga, S. Camarretta, N., Palmer,
M.E., Steer, B.S., Watt, M.S., Watt, P, & Holdaway,
A. (2025). Developing a forest description from
remote sensing: Insights from New Zealand. Science
of Remote Sensing, 11: 100183. https://doi.

org/10.1016/j.srs.2024.100183

Peterson, B., Dubayah, R, Hyde, P, Hofton, M., Blair, ].B,,
& Fites-Kaufman, J. (2007). Use of LIDAR for forest
inventory and forest management application. In
R.E. McRoberts, G.A. Reams, P.C. Van Deusen, &
W.H. McWilliams (Eds.), Proceedings of the seventh
annual forest inventory and analysis symposium
(pp. 193-202). US Department of Agriculture,
Forest Service.

Planet Labs PBC. (2024). Forest Carbon: Reliable, scalable
aboveground carbon estimates. Retrieved March 11,

2024, from https://www.planet.com/products/
forest-carbon/

Potapov, P, Li, X, Hernandez-Serna, A. Tyukavina,
A., Hansen, M.C, Kommareddy, A. Pickens, A,
Turubanova, S., Tang, H., Edibaldo Silva, C., Armston,
]J., Dubayah, R., Blair, ].B.,, & Hofton, M. (2021).
Mapping global forest canopy height through
integration of GEDI and Landsat data. Remote
Sensing of Environment, 253, 112165. https://doi.
org/10.1016/j.rse.2020.112165

Quirds, E., Polo, M.E.,, & Fragoso-Campén, L. (2021).
GEDI Elevation Accuracy Assessment: A case

Page 16

study of Southwest Spain. I[EEE Journal of Selected
Topics in Applied Earth Observations and Remote
Sensing 14, 5285-5299. https://doi.org/10.1109

JSTARS.2021.3080711

Rogers, G.M., Walker, S., & Lee, W.G. (2005). The role
of disturbance in dryland New Zealand: past
and present (No. 258, pp. 122-pp). Wellington:
Department of Conservation.

Roy, S., Swetnam, T,, Shen, C., Somasundaram, D., & Saah,
A. (2024). samapriya/awesome-gee-community-
datasets: Community Catalog (Version 3.0.0) [Data
set]. Zenodo.

Schwartz, M., Ciais, P, Ottlé, C., De Truchis, A., Vega, C.,
Fayad, 1., Brandt, M., Fensholt, R, Baghdadi, N.,
Morneau, F, Morin, D., Guyon, D. Dayau, S. &
Wigneron, J.P. (2024). High-resolution canopy
height map in the Landes forest (France) based
on GEDI], Sentinel-1, and Sentinel-2 data with a
deep learning approach. International Journal of
Applied Earth Observation and Geoinformation,
128: 103711. https://doi.org/10.1016/j.
jag.2024.103711

Tang, H., Stoker, J., Luthcke, S., Armston, ]., Lee, K., Blair, B.,
& Hofton, M. (2023). Evaluating and mitigating the
impact of systematic geolocation error on canopy
height measurement performance of GEDI. Remote
Sensing of Environment, 291: 113571. https://doi.

rg/10.1016/j.rse.2023.113571

Toitl Te Whenua Land Information New Zealand (LINZ).
(2022). New Zealand national aerial LiDAR base
specification (v1.2). Retrieved April 18, 2024, from
https://www.linz.govt.nz m/files/2022-1
New%?20Zealand%20National%20Aerial%?20
LiDAR%20Base%?2 ification%20v1.2.pdf

Toitl Te Whenua Land Information New Zealand (LINZ).
(n.d.). New Zealand Elevation. Toiti Te Whenua
Land Information New Zealand. Retrieved March

1, 2024, from https://registry.opendata.aws/nz-

elevation

Tolan, J., Yang, H.I, Nosarzewski, B., Couairon, G., Vo,
H. V, Brandt, ], Spore, ], Majumdar, S., Haziza, D.,
Vamaraju, J., Moutakanni, T., Bojanowski, P, Johns,
T, White, B., Tiecke, T., & Couprie, C. (2024). Very
high resolution canopy height maps from RGB
imagery using self-supervised vision transformer
and convolutional decoder trained on aerial lidar.
Remote Sensing of Environment, 300, 113888.
https://doi.org/10.1016/j.rse.2023.113888

Torresani, M., Rocchini, D., Alberti, A, Moudry, V.,
Heym, M., Thouverai, E., Kacic, P, & Tomelleri, E.
(2023). LiDAR GEDI derived tree canopy height
heterogeneity reveals patterns of biodiversity
in forest ecosystems. Ecological Informatics,
76, 102082. https://doi.org/10.1016/j.
ecoinf.2023.102082


https://doi.org/10.1007/978-90-481-3266-9_6
https://doi.org/10.1007/978-90-481-3266-9_6
https://doi.org/10.1002/rse2.330
https://doi.org/10.1002/ecs2.70026
https://doi.org/10.1016/j.rse.2022.113112
https://doi.org/10.1016/j.rse.2022.113112
https://doi.org/10.1016/j.srs.2024.100183
https://doi.org/10.1016/j.srs.2024.100183
https://www.planet.com/products/forest-carbon/
https://www.planet.com/products/forest-carbon/
https://doi.org/10.1016/j.rse.2020.112165
https://doi.org/10.1016/j.rse.2020.112165
https://doi.org/10.1109/JSTARS.2021.3080711
https://doi.org/10.1109/JSTARS.2021.3080711
https://doi.org/10.1016/j.jag.2024.103711
https://doi.org/10.1016/j.jag.2024.103711
https://doi.org/10.1016/j.rse.2023.113571
https://doi.org/10.1016/j.rse.2023.113571
https://www.linz.govt.nz/system/files/2022-10/New%20Zealand%20National%20Aerial%20LiDAR%20Base%20Specification%20v1.2.pdf
https://www.linz.govt.nz/system/files/2022-10/New%20Zealand%20National%20Aerial%20LiDAR%20Base%20Specification%20v1.2.pdf
https://www.linz.govt.nz/system/files/2022-10/New%20Zealand%20National%20Aerial%20LiDAR%20Base%20Specification%20v1.2.pdf
https://registry.opendata.aws/nz-elevation
https://registry.opendata.aws/nz-elevation
https://doi.org/10.1016/j.rse.2023.113888
https://doi.org/10.1016/j.ecoinf.2023.102082
https://doi.org/10.1016/j.ecoinf.2023.102082

Ng et al. New Zealand Journal of Forestry Science (2025) 55:14

Tsao, A., Nzewi, 1., Jayeoba, A., Ayogu, U., & Lobell, D.B.
(2023). Canopy height mapping for plantations
in Nigeria using GEDI, Landsat, and Sentinel-2.

Remote Sensing, 15(21): 5162. https://doi.
org/10.3390/rs15215162

van der Colff, M. & Kimberley, M.O. (2013). A National
height-age model for Pinus radiata in New Zealand.
New Zealand Journal of Forestry Science, 43: 4.
https://doi.org/10.1186/1179-5395-43-4

Wagner, FH., Roberts, S, Ritz, A.L.,, Carter, G., Dalagnol,
R., Favrichon, S., Hirye, M.C.M., Brandt, M., Ciais,
P, & Saatchi, S. (2024). Sub-meter tree height
mapping of California using aerial images and
LiDAR-informed U-Net model. Remote Sensing
of Environment, 305: 114099. https://doi.

org/10.1016/j.rse.2024.114099

Wallace, L., Lucieer, A., Watson, C., & Turner, D. (2012).
Development of a UAV-LiDAR system with
application to forest inventory. Remote Sensing,
4(6), 1519-1543. https: iorg/10.
rs4061519

Yu, Q., Ryan, M. G., Ji, W, Prihodko, L., Anchang, J. Y., Kahiu,
N., Nazir, A, Daj, ]., & Hanan, N.P. (2024). Assessing
canopy height measurements from ICESat-2
and GEDI orbiting LiDAR across six different
biomes with G-LiHT LiDAR. Environmental
Research: Ecology, 3(2): 025001. https://doi.
rg/10.1 2752-664X 9f2

Zhu, X, Nie, S., Wang, C,, Xi, X,, Lao, J., & Li, D. (2022).
Consistency analysis of forest height retrievals
between GEDI and ICESat-2. Remote Sensing
of Environment, 281: 113244. https://doi.
org/10.1016/j.rse.2022.113244

Page 17


https://doi.org/10.3390/rs15215162
https://doi.org/10.3390/rs15215162
https://doi.org/10.1186/1179-5395-43-4
https://doi.org/10.1016/j.rse.2024.114099
https://doi.org/10.1016/j.rse.2024.114099
https://doi.org/10.3390/rs4061519
https://doi.org/10.3390/rs4061519
https://doi.org/10.1088/2752-664X/ad39f2
https://doi.org/10.1088/2752-664X/ad39f2
https://doi.org/10.1016/j.rse.2022.113244
https://doi.org/10.1016/j.rse.2022.113244

