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Abstract

Background: Red needle cast (RNC) is a foliar disease of radiata pine (Pinus radiata D.Don) in New Zealand caused by
Phytophthora pluvialis Reeser, W.L.Sutton & E.M.Hansen and, to a lesser extent, Phytophthora kernoviae Brasier, Beales &
S.AKirk. Incidence and severity of RNC vary substantially between years. To investigate the impact of seasonal weather
variables on this variation, RNC was assessed annually for ten years at radiata pine transects.

Methods: Fifty-three transects were established in 2015 in the Central North Island and Gisborne Region (east coast North
Island) of New Zealand, with twenty-three monitored until 2024 (surviving harvest). The relationship between seasonal
weather variables and RNC severity was analysed using two non-parametric statistical approaches: (1) correlation analyses
(Spearman correlations, r, where positive values indicate an increase in RNC severity with an increase in the explanatory
variable); and (2) binary recursive partitioning (with models trained on 85% of observations and tested on the remaining
15%).

Results: Disease expressed more consistently, and severity was generally greater, at Gisborne sites. Disease severity peaked
in 2017 and 2023 in both regions. Autumn (March-May) variables tended to be prevalent amongst predictors of RNC
severity. Autumn soil moisture index (calculated from cumulative rainfall and evapotranspiration) was the most strongly
correlated variable for the Gisborne dataset (r,= 0.70) and, along with vapour pressure, were the key partitioning variables
in the recursive partitioning model. The strongest correlating variable for the Central North Island dataset was autumn
potential evapotranspiration (r_ = -0.46) while the most important variable and first data partition was autumn vapour
pressure. Model evaluation metrics indicated good performance: R? values were 0.63 and 0.68 for the Gisborne and Central
North Island test datasets respectively, and mean absolute errors were 18.1 % and 7.8 % for the respective datasets.

Conclusions: The importance of autumn more than summer weather variables in determining disease expression differs
from the findings of previous studies and indicates that conditions during periods of exponential epidemic growth may
be as, or more, important than initial inoculum level in determining RNC severity. Proactive control activities may require
long-term weather forecasting or frequent monitoring during this season.
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Introduction

The frequency and severity of plant disease epidemics
are strongly influenced by environmental factors,
such as temperature and precipitation. Within a year,
weather regulates the behaviour of pathogens and the
development of disease according to the season (Taylor
et al. 2003; Manzano et al. 2015; Migliorini et al. 2019).
Year to year differences in temperature and rainfall
give rise to episodic variation in disease levels over

the longer term (Harrison 1992; Peterson et al. 2015).
Understanding these within- and between-year patterns
is essential for effective disease management. Knowledge
of how seasonal environmental factors affect infection
(and other pathosystem processes) determines the best
time to apply a treatment during the year. Forecasting
those years in which treatment is necessary requires
an understanding of the way epidemics are influenced

© The Author(s). 2025 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.




Fraser et al. New Zealand Journal of Forestry Science (2025) 55:12

by temperature and moisture over extended periods
(Harrison 1992).

Associations with rainfall and temperature have
been particularly well studied for some forest diseases,
and this knowledge has enabled the development of
successful operational control programmes. A leading
example is Dothistroma needle blight (DNB), a foliage
disease predominantly of Pinus species caused by
Dothistroma septosporum (Dorogin) M.Morelet and
Dothistroma pini Hulbary (Bulman et al. 2016; Woods et
al. 2016). The strong relationship between the incidence
and severity of DNB and weather variables has been
well established globally (Parker 1972; Peterson 1973;
Gadgil 1974, 1977; Fraser etal. 2016; Woods et al. 2016).
In a New Zealand study in which plants of radiata pine
(Pinus radiata D.Don) were exposed weekly in the field,
infection by D. septosporum occurred mainly between
November and February (late spring to late summer),
with some infection extending into April (mid-autumn;
Gilmour 1981). Foliage became infected during intervals
when needles remained wet for 10 or more hours at
temperatures greater than 7 °C. Using extensive field
data, Watt et al. (2011) found positive associations with
temperature and relative humidity over the same period,
as well as with November rainfall. The information
from these studies explains the effectiveness of current
management of DNB in forest plantations by the aerial
application of a copper-based fungicide from Ilate
October, near the start of the main infection period
(Gilmour & Noorderhaven 1971; Gilmour et al. 1973;
Bulman et al. 2004). But severity of DNB also varies
greatly between years and is closely related to the
amount of yearly summer rainfall (Bulman et al. 2013).
This longer-term periodicity leads to a corresponding
between-year disparity in the total plantation area
treated for disease, and hence in the overall annual cost
(Bulman et al. 2004). Internationally, an increase in
disease severity in parts of the Northern Hemisphere at
the turn of the century was associated with increases in
summer precipitation (Woods et al. 2005, 2016).

Research is currently underway to determine the
influence of weather variables on another, more recent,
foliage disease in forest plantations in New Zealand
to assist in the development of a suitable treatment
procedure. Red needle cast (RNC) of radiata pine and
Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco),
caused by Phytophthora pluvialis Reeser, W.L.Sutton
& E.M.Hansen, was first recognised in New Zealand in
2008 (Dick et al. 2014; Ganley et al. 2014; Hansen et al.
2015). This pathogen, taxonomically quite distinct from
the true fungus D. septosporum, is thought to be native to
the Pacific Northwest region of North America (Brar et
al. 2018; Tabima et al. 2021), where it causes twig and
stem cankers on tanoak (Notholithocarpus densiflorus
(Hook. & Arn.) Manos, C.H. Cannon & S. Oh (Reeser et
al. 2013) and needle cast on Douglas-fir (Hansen et al.
2015). Phytophthora pluvialis was recently reported in
Europe for the first time, on western hemlock (Tsuga
heterophylla (Raf)) Sarg.) in the United Kingdom (UK),
causing crown dieback, defoliation, and branch and stem
cankers on mature trees and mortality of young trees
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(Pérez-Sierra et al. 2022). It has since been reported
on Douglas-fir in Belgium (Pirronitto et al. 2024),
Japanese larch (Larix kaempferi (Lamb.) Carriére) in
the UK (Pérez-Sierra et al. 2024) and stone pine (Pinus
pinea L.) in New Zealand (McLay et al. 2023). Red needle
cast of radiata pine in New Zealand is to a lesser extent
also caused by Phytophthora kernoviae Brasier, Beales &
S.AKirk (Dick et al. 2014).

Much has already been learned about RNC in New
Zealand pine plantations, including pathogen behaviour
in relation to seasonal weather factors through the
year. Symptom expression is observed largely from late
autumn through winter extending into spring (Fraser
et al. 2020). In a study using floating pine needles as
baits, inoculum was detected predominantly in the
colder months between March and December when
rainfall is also plentiful (Fraser et al. 2020). In another
study, plants exposed successively in the field became
infected between April and September (Hood et al
2022). The incidence and severity of RNC has also been
found to vary between years and across regions in New
Zealand. Although widespread nationally, certain areas,
such as the Gisborne Region (referred to as Gisborne
from here) in the east of the North Island, appear more
prone to the disease. In parts of the country, dramatic
outbreaks occur in radiata pine stands after several
years without symptoms only to be succeeded by a
further lull following the shedding of infected needles
and growth of healthy foliage. Understanding how
regional and temporal variations in weather patterns
may drive these fluctuations is pertinent to effective
disease management. Certain incidental empirical
observations have been informative. Detections of P,
pluvialis in diagnostics samples were greater in years
following wetter and milder summers and lower
following summer droughts (Fraser et al. 2020).
Several instances have been noted where severe RNC
expression occurred following summers with above
average rainfall (Hood, unpublished data). However, the
strongest evidence for the relationship between summer
conditions and disease severity comes from recent
large-scale analyses of disease detection via remote
sensing in Gisborne (Camarretta et al. 2024; Watt et al.
2024). Greater relative humidity and rainfall, and lower
solar radiation and maximum temperatures during
summer, were significantly related to disease severity
the following spring (Watt et al. 2024). Aligned to this,
Fraser et al. (2022) found aerial spraying with cuprous
oxide to be effective against RNC not only when applied
during autumn, but also in summer.

These findings are consistent with the recognised
epidemiology of P pluvialis and P kernoviae. The
production of sporangia on infected needles during
an epidemic, and similarity in behaviour with other
airborne Phytophthora species, indicate that P.
pluvialis, and likely P. kernoviae, undergo polycyclic
lifecycles (Hood et al. 2017, 2022, Gomez-Gallego et al.
2019, Fraser et al. 2020, McLay et al. 2025). For such
pathogens, the intensity of seasonal epidemics depends
upon the level of initial inoculum and the rate of cyclical
reinfection, both of which are affected by weather
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variables (Van der Plank 1963). Although it is not yet
known how P. pluvialis survives between outbreaks,
it has been suggested that a reduction in the initial
inoculum - e.g., by unfavourable hot, dry summers - may
lead to lower disease levels during the following winter
(Gardner et al. 2015; Fraser et al. 2020; Hood et al.
2022). Recent controlled trials have demonstrated the
sensitivity of different life stages of P. pluvialis to warmer
temperatures, at or above 23°C (McLay et al. 2025), and
the importance of moisture for successful infection and
sporulation (McLay et al, unpublished data). However,
conditions during the subsequent autumn-winter
exponential phase (the period when infection increases
rapidly) may also influence the developing epidemic.
Gomez-Gallego et al. (2019) found a positive correlation
at several sites between mean winter relative humidity
and relative abundance of P pluvialis in Douglas-fir
foliage. Identifying these key factors is relevant to work
being undertaken to determine the time of year to apply
treatments and to forecast those years in which this
should be done.

To further test the hypothesis that variation in
initial inoculum abundance, determined by the effect of
summer weather on pathogen survival, drives between-

TABLE 1: Details of red needle cast monitoring sites
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year differences in RNC expression, we assessed disease
incidence and severity in monitoring transects across the
centre and east coast of the North Island of New Zealand
annually between 2015 and 2024. The data obtained
also allowed for an examination of the role of weather
variables during the exponential phase of epidemics,
outside of summer months, in explaining between-
year variation in disease expression. This dataset
complements and expands on that of Watt et al. (2024)
by incorporating sites across multiple regions over a
longer period of ground-based monitoring. Disease data
from ground and satellite (Watt et al. 2024) for nine
transects enabled a direct comparison of assessment
methods and conclusions between studies.

Methods

Site selection

A series of 53 RNC monitoring transects was established
in radiata pine stands in the Central North Island (Bay
of Plenty and Waikato Regions) and Gisborne in October
2015, during the season when generally greater disease
expression is observed (Table 1; Figure 1; Figure 2).

Estimated Transect
stand age® length (m)

Code Transect start?

Elevation

Stand type Phytophthora identification

(m)

Pp¢ Pk¢ Spp.¢

Central North Island sites

6* 5794382N 1877871E Mature 2000
10* 5797563N 1877121E Pre mid 400
12*  5785948N 1882354E Mature 10
16*  5779062N 1878801E Post mid 400
17* 5782450N 1872014E Pre mid 10
26*  5758494N 1850307E Pre mid 200
27* 5756736N 1859053E Pre mid 150
31*  5744025N 1833207E Post mid 1000
32*  5713656N 1900047E Pre mid 1000
33*  5705798N 1906097E  Postmid 1000
35%  5727592N 1914388E Post mid 700
35b*  5727592N1914388E  Premid 700
36*  5728121IN1912292E  Premid 500
37%  5742421N 1905937E Post mid 600
38*  5712082N1891176E  Mature 1000

Sites with data from 2015-2022

30*  5739481N 1827878E Post mid 1000

34*  5707141N 1887661E Pre mid 2000
Sites with data from 2015-2021

13*  5762958N 1881973E Post mid 100
15%  5762958N 1881973E Post mid 1300
20*  5759720N 1853210E Post mid 800
28*  5752771N 1862599E Post mid 150

477 Plantation 2022 Q&C 2016
460 Plantation 2016
338 Shelterbelt

299 Plantation

549 Shelterbelt

380 Plantation 2022 Q 2022 Q

440 Plantation 2022 Q, 2023 Q

348 Plantation 2023Q 2016
600 Plantation 20;?)2%2(;)811 Q

697 Plantation = 2015 C, 2022 Q

430 Plantation 2022 Q&C

430 Plantation 2022 Q&C

438 Plantation 2018 Q&C

533 Plantation 2022 Q&C, 2023 Q

659 Plantation 2023 Q

524 Plantation 2022 Q&C 2016
681 Plantation 20;3;?&2 Q

389 Plantation

399 Plantation

381 Plantation

298 Plantation
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TABLE 1 continued: Details of red needle cast monitoring sites
Code Transect start® Estimated Transect Elevation Stand type Phytophthora identification
stand age® length (m) (m)

Pp¢ Pk¢ Spp.©
Central North Island sites
Sites with data from 2015-2020
1* 5791106N 1921987E Post mid 200 323 Plantation
8* 5798701N 1876963E Post mid 120 420 Plantation
14* 5763857N 1882184E Post mid 100 407 Plantation
29* 5750926N 1862613E Mature 500 277 Plantation
Sites with data from 2015-2019
7* 5794527N 1877070E Post mid 10 495 Plantation 2015, 2016
Sites with data from 2015-2017
2 5787719N 1919642E Post mid 1000 395 Plantation
3 5788576N 1910849E Mature 2000 340 Plantation
3a 5788122N 1911637E Post mid 1000 341 Plantation
4 5789352N 1910088E Mature 1000 322 Plantation
5 5797234N 1908952E Mature 2000 132 Plantation
18 5759297N 1853421E Mature 200 393 Plantation 2016
19 5759236N 1853187E Post mid 300 3918 Plantation 2015, 2016
21 5760675N 1851959E Mature 200 365 Plantation
22 5760398N 1852003E Mature 300 369 Plantation
23 5760234N 1852177E Mature 300 371 Plantation
24 5759444N 1851563E Post mid 500 384 Plantation
25 5759082N 1851525E Mature 500 377 Plantation
Sites with data from 2015-2016
9 5798644N 1876971E Post mid 200 420 Plantation
11 5789246N 1882085E Post mid 300 400 Shelterbelt
39 5760090N 1864270E Post mid 600 519 Plantation

Gisborne sites

2018 C,2019Q, 2019

40*  5733900N 2040910E  Post mid 100 544 Shelterbelt 2020 Q Q 2015

42*  5751246N 2046788E  Post mid 200 559 Plantation 2019 Q, 2020 Q&C

43*  5752097N 2046447E Mature 50 555 Plantation 2018 C, 2019 Q

44*  5752488N 2045983E  Pre mid 200 575 Plantation 2019 Q

45*  5753675N 2044578E Poffl ;‘;‘d/ 50 611 Plantation ~ 2018 C, 2020 Q
2018 C, 2019 Q,

49%  5751847N 2047393E  Post mid 200 521 Plantation 2020 Q&C, 2022

Q2023 Q
2018 C, 2020
* i : ’
50*  5683009N 2020012E  Pre-mid 500 474 Plantation (¢ " 0950
51* 5683667N 2022740E Pre-mid 1000 481 Plantation 201%8'230(219 Q
Sites with data from 2015-2022

41*  5750312N 2046702E  Post mid 100 477 Plantation 20128'230(219 Q

46* 5754891N 2043635E Pre-mid 30 602 Plantation

47*  5754746N 2043809E  Pre-mid 150 600 Plantation 2019 Q

48%  5754588N 2044269E Pr;‘i“d‘d/ 200 593 Plantation 2018 C

*Retained in data analysis; * New Zealand Transverse Mercator (NZTM); ®In 2015; ¢ Phytophthora pluvialis. Q, by high-throughput species-
specific qPCR (O’Neill et al. 2018) targeting the yptI or cox2 gene region (McDougal et al. 2021; O’Neill et al. 2025); C, by isolation following the
method outlined in Fraser et al. (2020); ¢ Phytophthora kernoviae. Q, by high-throughput species-specific qPCR (0’Neill et al. 2018) targeting
the ypt1 gene region (Schena et al. 2006); ¢ Phytophthora spp. Identified by Phytophthora ImmunoStrip (Agdia Inc., Elkhart, Indiana, USA, Cat.
#92601), except site 10 for which empty sporangia were observed emerging from symptomatic needles in July 2016.



Fraser et al. New Zealand Journal of Forestry Science (2025) 55:12 Page 5

17630 177930 178930°E
. v £ 50 l 3 7 i ]

IJ‘ oot 49X )
i‘i\ P 3730

2
- [-38°S

FIGURE 1: Locations of red needle cast monitoring sites (blue circles). Pink polygons indicate planted forest boundaries
(Land Use and Carbon Analysis System, Ministry for the Environment, 2020 dataset). Vertical distance between Lats. 38°
and 39°: 111 km. Credit: Ben Steer.

FIGURE 2: Photos of representative sites, showing variation in red needle cast severity, stand type (e.g. shelterbelt, or
production plantation), stocking density and stand management.
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Sites were chosen to include trees with diseased crowns,
except that a small number of unaffected green stands in
the Central North Island were also included for purposes
of comparison. To facilitate disease assessment, each
transect consisted of a length of stand edge of between
10 and 2000 m (mean 550 m) that was visible from a
public or forest road. Most sites (40) were mid-rotation
or later (trees approximately 12- to 25-years-old).
Trees at transects in some older stands were harvested
before monitoring was completed, leaving 23 sites for
assessment by the end of the trial in 2023 (monitoring
periods for all sites are included in Table 1). Data
collected during 2024 were excluded from the analyses
because of the small number of remaining sites (Table
S1). At seven Central North Island sites, copper fungicide
was aerially applied to control Dothistroma needle blight
as part of routine forest management during the period
of this study (or the year prior). Data from these sites for
the year following application were removed from the
analyses (Table S2). Only transects with a minimum of
four observations were retained for data analysis (12 in
Gisborne, 26 in Central North Island; Table 1).

Disease assessments

Monitoring sites were assessed for RNC levels once
per year between August and October (late-winter to
mid-spring), the period when disease expression is
generally greatest (Dick et al. 2014; Fraser et al. 2020).
At each assessment, two scores were estimated: (1)
the percentage of trees along the transect length with
symptoms of RNC (reddening or browning needles),
to the nearest 5%; (2) the percentage of crown on the
worst affected tree with symptoms of RNC, to the nearest
5%. Assessments were undertaken by three experienced
Forest Pathologists, one undertaking the scoring from
2015 to 2019, one from 2017 to 2021, and one from
2021 to 2024. Assessors calibrated their scores in cross-
over years.

Pathogen identification

Red needle cast symptomology is distinctive from other
pine needle diseases and disorders in New Zealand.
However, care was taken to record RNC only in cases
where there was no reasonable doubt. Samples were
occasionally collected for laboratory verification as an
additional precaution. These samples were also used to
confirm whether P, pluvialis or P. kernoviae was the cause
of the RNC symptoms. Ad hoc samples with typical RNC
needle lesions were collected in polythene bags from
trees within the transects or from nearby pine trees.
Several different diagnostic methods were applied during
the course of the study (Table 1), including Phytophthora
ImmunoStrip® (Agdia, Inc., Elkhart, IN, USA, Cat.
#92601), isolation following the method outlined in
Fraser et al. (2020), and/or by high-throughput species-
specific qPCR (O’Neill et al. 2018) targeting the ypt1 or
cox2 gene regions (McDougal et al. 2021; Schena et al.
2006; O’Neill et al. 2025). Representative cultures from
this study were deposited in Scion’s National Forest
Culture Collection (Table S3).
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Weather data
The National Institute of Water and Atmospheric
Research (NIWA) provides daily meteorological
estimates for points on a Virtual Climate Station Network
(VCSN) spatially interpolated using actual data from real
climate stations located around New Zealand (https://
www.niwa.co.nz/climate/our-services/virtual-climate-
stations). Data for the following variables were extracted
from the simulated weather station nearest to each site
for the period from October 2014 to September 2023:
daily maximum air temperature (°C), daily minimum
air temperature (°C), daily soil temperature (°C), rain
accumulation over 24 hr (mm), relative humidity
(RH) at 9 am (%), solar radiation over 24 hr (M]/m?),
mean wind speed over 24 hr at 10 m (m/s), Penman’s
evapotranspiration index over 24 hr (kg/m?), mean sea
level pressure at 9 am (hPa), vapour pressure at 9 am
(hPa), and soil moisture index over 24 hr (mm).
Seasonal averages (spring: September through
November; summer: December through February;
autumn: March through May; winter: June through
August) were computed for each variable (Table 2).
Number of days with rainfall exceeding 0.3 mm and
the number of days for which maximum temperature
exceeded 23°C per season were also computed, as was
seasonal total rain and maximum wind speed.

Impact of weather on red needle cast - statistical
analysis

To elucidate weather variables that may drive RNC
severity, a disease severity index, computed as the
product of transect score and worst tree score divided
by 100 (comparable to a percentage), was evaluated
using two nonparametric statistical approaches, (1)
correlation analyses and (2) a data mining technique
using non-parametric binary recursive partitioning.

In the former approach, Spearman’s rho, denoted
r, which measures the strength of a monotonic (ie.
not necessarily linear) relationship between paired
data, was determined. Those weather variables for
which the correlation with RNC severity index was
significant and at least 0.40 (in absolute terms),
indicating a moderate relationship, were extracted. In
the latter approach, the binary recursive partitioning
technique (Breiman 2017, Breiman et al. 1984) which
successively partitions data into smaller and smaller
groups, each with similar characteristics, and with each
split chosen to improve overall model performance, was
applied. The initial dataset was randomly split into 85%
training and 15% test data. The recursively partitioned
regression model, using 10-fold cross-validation to
determine the optimal cost complexity parameter was
pruned to avoid overfitting. Pruning followed the cost
complexity approach to determine the best balance
between complexity and predictive accuracy. Model
performance and accuracy metrics were evaluated on
the test dataset. Mean absolute error (MAE) between
predicted and actual values and R? were the chosen
metrics. The pruned decision trees of the optimal model,
and variable importance (normalised to a 0 - 1 scale),
along with the strongest of correlations identified in the
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TABLE 2: Weather variables utilised in this study, calculated from NIWA'’s Virtual Climate Network https://www.niwa.

Field Units Description

avMSLP hPa Mean seasonal pressure reduced to Mean Sea Level in hPa AT 9am local day.

avPET mm Mean seasonal 24-hour Penman Potential Evapotranspiration total in mm FROM
9am local day.

avRAIN mm Mean seasonal total 24-hour amount of rain in mm FROM 9am local day.

nRain Count Number of rain days (>0.3 mm).

avRH % Mean seasonal relative humidity in percent AT 9am local day.

avSMI mm Mean seasonal 24-hour soil moisture index in mm FROM 9am local day calculated
from rainfall and evapotranspiration®.

avETMP °C Mean seasonal 10cm earth temperature in °C AT 9am local day.

avRad MJ/m?  Mean seasonal 24-hour amount of accumulated global solar radiation in MJ/m?
(Mega Joules per square metre) FROM midnight local day.

avVP hPa Mean seasonal vapour pressure in hPa AT 9am local day.

avWIND m/s Mean seasonal mean wind speed in m/s at 10m above ground level over 24 hours

FROM midnight local day.
maxWIND m/s

avTMAX °C
avTMIN °C
nhot Count

Maximum wind speed within a season.

Mean seasonal maximum 24-hour temperature in °C FROM 9am local day.
Mean seasonal minimum 24-hour temperature in °C TO 9am local day.
Number of days with TMAX exceeding 23 °C

2 The base value is -150mm (“permanent wilting point”) based on “soil store capacity”. A value of “0” indicates the soil is at “field capacity”
(amount of water held in the soil after the excess has drained away). A value greater than “0” indicates runoff.

correlation analyses, formed the basis for understanding
relationships of seasonal weather with RNC disease
severity.

In addition to analyses by both methods of the whole
dataset comprising all sites, separate analyses were also
undertaken for the Gisborne and Central North Island
datasets, due to the distinctness of the regions in disease
history and site characteristics.

Statistical analyses were performed using R (R Core
Team 2022) supplemented by packages ‘tidyverse’
(Wickham et al. 2019), ‘yardstick’ (Kuhn et al. 2024a),
‘parsnip’ (Kuhn et al. 2024b), ‘rsample’ (Frick et al.
2024), ‘rpart’ (Therneau et al. 2022) and ‘rpart.plot’
(Milborrow 2024).

Comparison of ground based and satellite
assessments

A direct comparison between the ground-based RNC
index data from this study and the remote sensing RNC
index of Watt et al. (2024) was undertaken for nine
transects in Gisborne where data were available for both
(Transects 41, 42, 45, 46, 47, 48, 49, 50, and 51). Watt
et al. (2024) used Sentinel-2 satellite imagery to classify
RNC severity from the difference in the normalised red/
green index (R/G,) between February/March (disease
free time of year) and September (peak disease). This
R/G,; was calculated for the pixels corresponding with
the nine transects for all years that satellite imagery was
available (2019-2023). Pixel values were extracted in a
GIS environment (QGIS version 3.34.12) using the zonal

statistics function. For each linear transect, an internal
10-meter buffer from the forest edge was created and
then used to extract pixel level information from the
R/G, layers. The forest boundary layer used to match
each linear transect was developed in another study
and closely matched forest edges (Pearse et al. 2025).
The choice of fixing the width of the transect polygon
to 10 meters was made to match the resolution of the
Sentinel-2 imagery used to derive the R/G layers.
The ground-based and satellite disease indices were

compared by linear regression in R.

Results

General patterns of RNC expression

Red needle cast severity (index) varied among transects,
regions, and years (Figure 3). Within a year and region,
RNC index could vary massively among transects, from
close to zero to 100 % (Figure 3). Apart from 2015,
average RNC index was consistently greater for the
transects in Gisborne than for those in the Central North
Island (see Figure 4). In Gisborne, RNC index was least
in 2015 (6 %), then increased steadily to 83 % in 2017,
before declining to 7 % in 2021, followed by a rapid
increase to 90 % in 2023. In the Central North Island,
average RNC index was moderate from 2015-2017 (25-
30 %), negligible between 2018 and 2021, and greatest
in 2023 (43 %). RNC was low (4 %) in both regions in
2024 (Table S1).
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FIGURE 3: Annual red needle cast index at each monitoring transect in the Central North Island and Gisborne Region.
Different transects are represented by different coloured lines.

o
75 z" /\/

>< Z

% <

S =

£ 50 |; 9

@) ©

Z =

@ 25 IS 8
2
=

0 <7
2016 2018 2020 2022 2016 2018 2020 2022

= g

& 135 el

< ? 25

o ~

$ 13.0 - — oNi

2 125 nt:“ 30 —— Gisborne
c

£ £ 25

2 120 =

3

< )
=

2016 2018 2020 2022 < 2016 2018 2020 2022

23

22

Autumn avSMI (mm)
s 48 .
Summer avTMAX (C)
s R

2016 2018 2020 2022 2016 2018 2020 2022

FIGURE 4: Annual averages of regional red needle cast severity (%) and key seasonal weather variables identified
through correlation and binary recursive partitioning analyses. CNI, Central North Island.



Fraser et al. New Zealand Journal of Forestry Science (2025) 55:12

Pathogen identification

Phytophthora pluvialis was confirmed as the dominant
cause of RNC at the study sites. Across all years, P,
pluvialis was confirmed present at 11/12 transects in
Gisborne and 11/15 transects in the Central North Island
that survived until the end of monitoring (Table 1).
Phytophthora kernoviae was detected at two transects:
one in Gisborne in 2019 and another in the Central North
Island in 2022, both times co-occurring with P. pluvialis.

Spearman correlations of RNC index and seasonal
weather variables

With data from all transects, RNC index significantly
correlated with seven weather variables (|r | > 0.40):
four from autumn, two from summer, and one from
winter (Table 3). RNC index was positively correlated
to autumn mean vapour pressure, mean minimum
temperature, mean soil temperature, and number of
rain days (see also Figure 4). RNC index was negatively
correlated to summer mean maximum temperature
(Figure 4) and number of hot days (>23°C), as well as
winter mean relative humidity.

When the two regions were analysed separately,
different weather variables of importance emerged
compared to the analysis of the full dataset. There was
no agreement (amongst variables for which the absolute
value of the correlation was at least 0.40) between the
Gisborne and Central North Island datasets. A greater
number of variables significantly correlated with disease
in Gisborne, and stronger relationships were seen for
this dataset (Table 3).

For the Gisborne dataset, RNC index significantly
correlated (|r| = 0.40) with 11 weather variables: six
from autumn, three from spring, one from summer, and
one from winter. The strongest correlation, a positive
relationship, was with autumn mean soil moisture index
(0.70; Figure 4). Autumn mean minimum temperature
(0.57), mean vapour pressure (0.55), number of rain
days (0.49) and mean relative humidity (0.44) were all
also positively correlated with RNC index (see also Figure
4). Autumn maximum wind was negatively correlated
with disease (-0.51). Spring mean evapotranspiration

Page 9

(-0.58) was negatively correlated with RNC index. Spring
mean relative humidity (0.47) and mean soil moisture
index (0.41) were positively correlated with RNC index.
Summer maximum wind (0.53) was positively correlated
with disease. Winter mean sea level pressure (-0.56) was
negatively correlated with RNC index.

For the Central North Island dataset, RNC index
significantly correlated (|r,| = 0.40) with four weather
variables, the strongest relationship being with autumn
mean evapotranspiration (-0.46). Two summer variables,
mean evapotranspiration (-0.40) and mean maximum
temperature (-0.40; Figure 4), were negatively correlated
with RNC index. Winter mean vapour pressure was
negatively correlated with RNC index (-0.42).

Binary recursive partitioning analysis of disease
index and seasonal weather variables

When data for all transects were analysed by binary
recursive partitioning, four autumn, four winter, and two
spring variables made up the top ten most important
weather factors in explaining RNC index (Figure 5). With
just three splits, model performance assessed using the
test dataset was R*= 0.55, MAE = 17.4 %. Autumn mean
vapour pressure was by far the most important variable
(normalised importance = 0.19). Spring mean soil
temperature, autumn mean soil temperature, autumn
mean minimum temperature, and spring mean vapour
pressure followed with similar normalised importance
measures (0.09 - 0.11). Four winter variables—
maximum wind, mean relative humidity, mean wind, and
mean sea level pressure — along with autumn maximum
wind were also amongst the top 10 (normalised variable
importance 0.04 - 0.07). The most important summer
variable was mean sea level pressure (11" with a
normalised importance of 0.04). The model predicted
moderate RNC index (averaging 54 %) when autumn
mean vapour pressure was at least 13 hPa and low RNC
index (13 %) at lower vapour pressures. The greatest
RNC index (70 %) was associated with autumn mean
vapour pressure of at least 13 hPa and winter maximum
wind of less than 8.6 (m/s).

TABLE 3: Spearman correlations (for which |r| = 0.40) of red needle cast index and seasonal weather variables.
Highlighted variables are consistent across datasets. Identical variables share the same colour.

All transects r, Central NorthIsland r_ Gisborne Region r,
avRH_Winter -0.50 avPET_Autumn -0.46 avSMI_Autumn 0.70
avVP_Autumn 0.50 avVP_Winter -0.42 avMSLP_Winter -0.58
avTMIN_Autumn 0.48 avPET_Summer -0.40 avPET _Spring -0.58
avTMAX_Summer -0.44 avTMAX_Summer -0.40 avTMIN_Autumn 0.57
lnrainAutumn | 0.44 avVP_Autumn 0.55
nhot_Summer -0.41 maxWIND_Summer 0.53
avETMP_Autumn 0.40 maxWIND_Autumn -0.51
hrain_Autumn 049
avRH_Spring 0.47
avRH_Autumn 0.43

avSMI_Spring 0.41
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The binary decision tree for Gisborne transects
identified two autumnal splits segregating RNC index
into low, moderate, and high severity (Figure 6). RNC
index was predicted to be low (averaging 7 %) when
autumn mean soil moisture index was below -54 mm.
At wetter levels of mean soil moisture, RNC index was
predicted to be moderate (32 %) when autumn mean
vapour pressure was less than 12 hPa, and high (74 %)
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when 12 hPa or greater. Goodness-of-fit statistics for
the test dataset were R?= 0.63, and MAE = 18.1 %. As
identified with correlation analyses, autumn mean soil
moisture index was the most important variable (with
a normalised importance of 0.20). Spring mean relative
humidity (0.19), spring mean evapotranspiration
(0.15), summer mean relative humidity (0.13), summer
mean soil moisture index (0.11), and winter mean sea

All transects

25
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13
70%

avVP_Winter >= 9.1

5.5 26
46% 24%

All transects

54
30%

maxWIND_Winter >= 8.6

12% 19%

avVP_Autumn

avETMP_Spring

avETMP_Autumn

avTMIN_Autumn
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maxWIND_Winter ]

avRH_Winter ®

avWIND_Winter °
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avMSLP_Winter °

avMSLP_Summer
avVP_Winter
avWIND_Spring
avTMAX_Winter
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avTMIN_Winter —e

0.00 0.05

0.10 0.15

Normalised variable importance

FIGURE 5: Binary recursive partitioning analysis, showing decision tree and variable importance, of seasonal weather
impacts on red needle cast index for all transects. Upper numbers in the shaded polygons give mean RNC index estimates

(%), lower numbers indicate the percentage of data points.



Fraser et al. New Zealand Journal of Forestry Science (2025) 55:12

level pressure (0.11) followed in terms of importance.
The remaining variables in the top 10 but with lesser
importance (< 0.03) were: mean vapour pressure for
each of the four seasons (autumn > spring > winter >
summer) and spring number of hot days.

The decision tree for the Central North Island (Figure
7) had three splits comprising two autumn (mean
vapour pressure and mean minimum temperature)
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and one winter variable (mean vapour pressure).
Goodness-of-fit statistics for the test dataset were R? =
0.68, and MAE = 7.8 %. RNC index was low (averaging
10 %) at autumn mean vapour pressures less than 13
hPa. RNC index was greatest (65 %) when autumn
vapour pressure was greater than 13 hPa and autumn
mean minimum temperature less than 9.4°C. The most
important variable was autumn mean vapour pressure

Gisborne transects
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34%

Gisborne transects

8%

—{yes }-avSMI_Autumn < =54

69
66%
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avRH_Summer

avSMI_Summer
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avVP_Spring )
nhot_Spring —e
avVP_Winter —e
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avMSLP_Spring —e
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0.10 0.15 0.20

Normalised variable importance

FIGURE 6: Binary recursive partitioning analysis of seasonal weather impacts on red needle cast index for transects
in the Gisborne Region. Upper numbers in the shaded polygons give mean RNC index estimates (%), lower numbers

indicate the percentage of data points.
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with a normalised importance of 0.15 followed by sea level pressure, winter mean radiation, winter mean
autumn mean minimum temperature (0.12) and spring wind, and summer mean minimum temperature. Winter
mean radiation (0.11). The six variables that followed mean minimum temperature completed the top 10 list
were of similar importance (0.07): autumn mean soil (0.04). All remaining variables identified as important
temperature, winter mean vapour pressure, winter mean (Figure 7) had lower normalised values (down to 0.02).

avVP_Autumn
avTMIN_Autumn
avRAD_Spring
avETMP_Autumn
avVP_Winter
avWIND_Winter
avTMIN_Summer
avRAD_Winter
avMSLP_Winter
avTMIN_Winter
avTMAX_Spring
avTMAX_Winter
avTMAX_Summer
avETMP_Spring
nrain_Winter

maxWIND_Spring

10
83%

avVP_Winter >=9.1
4 24
57% 26%

CNI transects

avVP_Autumn < 13-{no }——

CNI transects

15
100%

avTMIN_Autumn >=9.4

23
10%

[ ]

0.00

0.05 0.10 0.15
Normalised variable importance

FIGURE 7: Binary recursive partitioning analysis of seasonal weather impacts on red needle cast index for transects
in the Central North Island (CNI). Upper numbers in the shaded polygons give mean RNC index estimates (%), lower

numbers indicate the percentage of data points.



Fraser et al. New Zealand Journal of Forestry Science (2025) 55:12

Comparison of ground-based and satellite
assessments

Ground-based and remote sensing RNC estimates for the
nine transects were significantly positively related (R?* =
0.54, F(1, 39) = 45.9, p < 0.001; Figure 8). Comparing
yearly averages, including regional estimates from Watt
et al. (2024) as well as transect-specific estimates, there
was good agreement between all three datasets, with the
greatest disease levels in 2023, intermediary levels in
2019 and 2022, and the lowest levels in 2020 and 2021
(Figure 8).

Discussion

There was significant variation in red needle cast
incidence and severity within- and among- sites,
regions, and years. Generally, disease expression was
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more common and severe at sites in Gisborne than
the Central North Island. In both regions, mean annual
RNC oscillated between peaks in 2017 and 2023, with
lows between 2018 and 2021 (more pronounced in
the Central North Island). Within sites, RNC expression
could vary vastly between years, but could also express
consistently (more so in Gisborne). Phytophthora
pluvialis was found to be the species most associated
with RNC, corresponding with the findings of previous
studies. Results did not unequivocally support the
hypothesis that summer weather, through its impact
on pathogen survival and initial inoculum levels,
drives between-year variation in RNC expression.
Weather conditions during seasons outside of summer,
particularly autumn, when exponential epidemic growth
is more likely to occur, appeared to have a greater impact
on disease severity. While variables from all seasons

® 2019 @ 2020 2021 @ 2022 @ 2023 All years «eceeee- Linear (All years)
400
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y =1.5579x + 67.162
300 R2 =0.5408
p <0.001
250 ‘
o
% 200 ® ‘ ......... ®
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® e e
............... O
1000 ® e ® o [ )
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Ground score

2019 2020 2021 2022 2023

Mean RNC index from ground assessments (c. %) 55 13 7 67
Remote Sensing index mean for transect 138 76 81 167

Area of Gisborne Region with RNC detected from
satellite imagery as reported by Watt et al. (2024) (%) 10 1 5 23

FIGURE 8: Relationship between red needle cast index from ground scores and remote sensing index for nine sites in the
Gisborne Region. Ground scores were calculated as transect score x worst tree / 100 (translating to a rough percentage
canopy affected). The RS index is the differences in Red/Green indices from September and February/March each year

(R/G

diff) )

The table also includes data estimated for the whole region from Watt et al. (2024). Degree of shading in the

table indicates rank of RNC severity (light grey = low disease, dark grey = severe disease).
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were found to have relationships with RNC expression,
and the most important variables differed between the
two regions, autumn and spring variables tended to have
the strongest correlations with disease and greatest
importance. When data for all transects were analysed
together, autumn mean vapour pressure, a measure of
atmospheric humidity, was the most important variable
by both analysis methods (positively related to RNC).
When the Gisborne dataset was analysed separately,
autumn mean soil moisture index, which incorporates
current and prior rainfall and evapotranspiration, was
the most important variable by both analysis methods
(positively related to RNC). When the Central North
I[sland dataset was analysed separately, autumn mean
vapour pressure (positive relationship) was the most
important variable by binary recursive partitioning
analysis, but autumn mean evapotranspiration (negative
relationship) had the strongest correlation.

While numerous seasonal weather variables have
potential importance in determining RNC severity, care
must be taken interpreting the impact of individual
weather variables on RNC, given their co-variation.
There was also variation between the two regions in
weather variable importance, with greater complexity in
relationships seen in the Central North Island. However,
relationships between weather variables and RNC were
generally as expected based on previous knowledge of the
pathosystem: RNC tended to be greater following wetter
weather (greater vapour pressure, relative humidity,
rainfall, soil moisture index; lower evapotranspiration)
and milder temperature conditions (dependent on
season, lower maximum temperatures and hot days
in summer, greater minimum (and soil) temperatures
in autumn). These relationships correspond with the
known moisture and temperature requirements of
the different life stages of P pluvialis. Needle wetness
is required for both infection and sporulation (McLay
et al. unpublished data). Controlled studies have
also demonstrated the direct impact of temperature
on several P. pluvialis life stages; with infection and
sporulation greatest between 10-20°C and restricted at
or above 23°C (McLay et al. 2025). These relationships
may explain the contrasting role between seasons of
maximum and minimum temperature. Generally, in
the regions studied here, temperatures warm enough
to limit P. pluvialis are restricted to summer months,
while in other months, rates of infection and sporulation
will increase with minimum temperature, if moisture
is also available. Further, numerous prior field studies
have demonstrated similar relationships between the
weather variables identified here and a range of RNC
metrics. Detection of P. pluvialis inoculum in the same
two regions was positively related to moisture variables
and negatively related to maximum temperature (Fraser
et al. 2020). Infection by P. pluvialis and P. kernoviae
on trap plants in the Central North Island occurred
predominantly during periods of the year when
temperatures, solar radiation, and evapotranspiration
are lowest, relative humidity is greatest, and rainfall is
plentiful (Hood et al. 2022). Abundance of P. pluvialis
in foliage of Douglas-fir was positively related to site
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winter relative humidity (Gomez-Gallego et al. 2019).
Annual RNC severity in Gisborne, as measured from
satellite imagery, was positively related to rainfall and
relative humidity and negatively related to radiation and
maximum air temperature in mid- to late-summer (Watt
etal. 2024).

Superficially, the finding that autumn vapour
pressure in the Central North Island and soil moisture
index in Gisborne were the most important weather
variables in explaining annual RNC expression contrasts
to the results of Watt et al. (2024), who posited
that between-year survival of the pathogen, driven
by summer conditions, was critical in determining
annual variation in disease expression. Autumn soil
moisture index, calculated from cumulative rainfall and
evapotranspiration, will be directly impacted on by the
variables identified by Watt et al. (2024), suggesting that
there is some agreement between the studies. However,
the findings reported here imply that the cumulative
effect of weather variables that impact moisture and
temperature during a longer period from late summer
through autumn are important, and thus that conditions
during the exponential epidemic phase play a significant
role in RNC expression. Soil moisture index was not
included in the analysis by Watt et al. (2024), so a direct
comparison of the studies cannotbe made. Itisimportant
to note that although not the most important variables,
summer relative humidity and soil moisture index for
the Gisborne dataset, and summer mean minimum
temperature for the Central North Island dataset were
also identified as important variables. Likewise, summer
mean maximum temperature and number of hot days
(maximum temperature >23°C) for the complete
dataset, and summer mean maximum temperature and
evapotranspiration for the Central North Island dataset
were moderately negatively correlated to RNC severity.

The two variables identified as most important in
this study, autumn vapour pressure and soil moisture
index, most likely impact RNC severity indirectly
through their co-variation with other weather variables,
rather than having direct impact on disease processes.
Vapour pressure is the contribution of water vapour
to atmospheric pressure. When temperature is held
constant, an increase of vapour pressure means an
increase in humidity. Greater humidity will increase
condensation and dew formation, supporting pathogen
infection, sporulation, and spread. However, vapour
pressure in this dataset was strongly positively correlated
with temperature variables, particularly minimum
temperature (data not shown). Thus, the positive
relationship between autumn vapour pressure and RNC
severity may also be linked to minimum temperatures.
Greater minimum temperatures, when maximum
temperatures and moisture availability are not limiting,
may increase rates of infection and sporulation (McLay
et al. 2025). Greater minimum temperatures may also
indicate periods of cloudy weather, in contrast to lower
minimums associated with clear skies. The relationship
between RNC severity and soil moisture index, calculated
from rainfall and evapotranspiration, is easier to explain,
as this variable likely correlates strongly with pathogen
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infection, sporulation, and spread risk. Free moisture
on foliage and moderate temperatures (<23°C) are
critical for all three of these disease processes (McLay
etal. 2025; McLay et al. unpublished data). Soil moisture
index is negatively correlated with temperature
variables, evapotranspiration, and radiation and
positively correlated with rainfall and relative humidity.
The strength of its importance likely results from its
cumulative nature, representing accrued risk of multiple
cycles of infection, sporulation, and spread by the
pathogens during late summer and through autumn, the
latter season being a time when maximum temperatures
will no longer be limiting. Aligned to this, the finding
that spring variables (9-12 months before disease
assessments) were of importance in several analyses
indicates that a long cumulation of conditions impacting
pathogen survival and population growth may be
playing a role. Similar findings have been reported for
Phytophthora ramorum Werres, De Cock & Man in’t Veld
in forests in Oregon, where extent of disease was best
explained by spring precipitation and extent of disease
the year prior (Peterson et al. 2015).

The effects of weather on infection and sporulation
appear to extend indirectly beyond the current year.
In this study, despite variation among sites in annual
trends, disease severity at the regional scale rose steadily
over several years to the peaks in 2017 and 2023, with
a corresponding decrease to a trough during the interval
between (Figure 4). The amount of initial inoculum
each season may depend on the level of disease during
the previous year. It is not yet known how P. pluvialis
survives between years, but it is likely that favourable
weather leading to extensive disease results in increased
primary inoculum in the following year. Repetition
causes a progressive increase in disease severity over
several successive years until there is an inevitable
collapse or decline as most inoculum is lost with the
shedding of infected foliage from much of the crown.

The trend in RNC expression seen for the sites in
Gisborne corresponded well with those reported by Watt
etal. (2024) for the whole region indicating that, despite
assessing a limited number of sites in this study, the
results are representative of larger-scale regional trends
in disease expression. For nine sites, a direct comparison
between ground and aerial scores was possible allowing
evaluation of the sensitivity of the remote sensing
classification. Watt et al. (2024) classified a R/G lower
than 200 as healthy, between 200-280 as low severity,
280-380 as medium severity, and above 380 as high
severity RNC. Although the ground and aerial scores
were positively correlated (Figure 8), there was an
indication that the remote sensing classifications may
underestimate disease or that the ground-based disease
index may inflate disease severity, or both. This is not
unexpected, given disease will likely have to express
higher in the crown for aerial detection and the ground-
based index, derived from the complete crown depth,
may inflate disease in cases when small amounts of
symptoms are present on many trees combined with one
or a few trees with severe expression. The discrepancy
between assessment methods may somewhat explain

Page 15

the variation between the studies in identifying seasonal
weather variables of importance. The method of Watt et
al. (2024) may only be detecting the severest disease,
which largely occurred in 2022 and 2023, years that
coincided with extreme mid- to late-summer rainfall
events. The shorter monitoring period of Watt et al.
(2024) (5 years) compared to this study (9 years)
may also partially explain the discrepancy in findings.
Further ground truthing will be needed to better relate
the remote sensing index to on-ground severity. This
may be important for work that aims to enable regional
scale estimates of RNC growth impacts by determining
the relationship between remote sensing severity
classifications and growth impacts. Nonetheless, these
comparisons provide confidence that either method can
be used to distinguish years of severe or little disease to
support identification of environmental drivers.

Improving our understanding of regional and site
variation in disease expression was not the focus of this
study, however the results demonstrate that expression
of RNC was greater and more consistent at sites in
Gisborne than the Central North Island. This is similar to
the pattern seen previously for detection of inoculum ata
small number of sites in each region (Fraser etal.2020).
In that study, inoculum of P. pluvialis was detected in all
three years at all sites in Gisborne but only in one year
at a site in the Central North Island. Several factors may
have contributed to this regional variation, including
differences in weather, site factors, and management
operations (see below). All sites in Gisborne were
located in coastal high elevation plantations (c. 500-600
m asl) and thus were exposed to more maritime weather
conditions, with greater seasonal total rain, fewer hot
days,and warmer mean seasonal minimum temperatures
(Table 4), that together may have increased pathogen
survival and disease development rates.

The difference in expression between these regions
may also be linked to variation in Dothistroma needle
blight (DNB) presence and management. In the Central
North Island, low volumes of cuprous oxide are aerially
applied to control DNB. Aerial surveys are undertaken
in July and August and plantations under 16 years
of age with symptomatic foliage percentages above
certain thresholds are identified for control operations
that take place in November and February (Bulman et
al. 2004). The disease is rarely confirmed by ground
truth, and therefore, it is likely that these applications
may be providing some control of RNC in these areas.
In contrast, DNB is less commonly reported in Gisborne,
where no active control programmes are currently in
place. Cuprous oxide, applied at the same dose as that
used for DNB control, is known to reduce RNC incidence
and severity at an operational level (Fraser etal. 2022).
[tis possible that these operations are partly responsible
for the lower levels of RNC observed in the Central North
Island and they may have impacted our conclusions
on the role of weather. Application of cuprous oxide
may reduce P pluvialis inoculum loads in the region,
impacting sites that may not have been treated directly.
During this study, control operations were carried out in
stands adjacent to our sites in several years and cuprous
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TABLE 4: Mean seasonal weather variables for the study sites in the two regions. Sites in the Gisborne region were
in coastal high elevation plantations, exposed to more maritime weather conditions, with greater seasonal total rain,
fewer hot days, and warmer mean seasonal minimum temperatures (bold).

Region Season MSLP PET RAIN RH SMI ETMP RAD TMAX TMIN VP WIND max sum nrain Nhot
WIND RAIN

CNI Spring 1016 2.8 4.1 809 -184 121 162 164 7.0 114 39 13.1 369 373 2.2
Summer 1016 4.2 35 775 -73.1 183 21.1 225 119 153 3.6 13.5 314 25.7 387
Autumn 1018 1.8 4.1 878 -41.1 13.1 115 180 82 128 3.2 11.5 379 30.0 58
Winter 1017 08 49 904 15 7.0 74 122 35 92 35 12.0 450 384 0.0

Gisborne Spring 1015 3.3 50 772 -256 133 178 165 82 116 41 108 450 348 1.7
Summer 1015 4.5 34 764 -82.1 19.7 221 216 12.8 156 3.8 129 307 271 281
Autumn 1018 2.2 48 834 -346 138 117 180 99 132 35 10.5 440 348 41
Winter 1016 13 57 837 -03 7.7 79 129 55 94 39 10.7 523 402 0.0

oxide was directly applied to at least seven study sites
in the Central North Island (Table S2). Data for the year
following direct control operations were removed from
the analysis. Three sites were treated in one year and four
sites in two years during (or immediately preceding) the
monitoring window. RNC severity in the year of, and year
immediately following, spray application varied from
low to moderate. Two instances of moderate disease
development the year after application contrasts with the
results of Fraser et al. (2022), who found that application
of cuprous oxide in November reduced RNC severity the
year following. Although this study was not designed to
test this element, the observation may indicate research
on efficacy and optimal spray timing for control of RNC
may be required on a wider range of sites.

Regardless of the cause of regional differences in
disease expression and weather variables of importance,
it suggests there may be a need for site- or region-
specific monitoring and management of RNC. There are
other examples of Phytophthora species being limited
by different processes in contrasting areas. For example,
seasonality of P kernoviae sporulation varies between
New Zealand and the UK (Fraser etal. 2020). Detection of
inoculum peaked in the cooler and wetter winter months
in New Zealand, but in the warmer and drier summer
months in the UK. Warmer summer temperatures in New
Zealand, that reached above thresholds for successful
infection, likely limited the pathogen there, while cooler
winter temperatures likely limited the pathogen in the
UK. Similarly, activity of P ramorum is primarily limited
by cold winter weather in the UK but by hot summer
weather in California (Garbelotto & Hayden 2012). At a
smaller scale, Swiss needle cast (Nothophaeocryptopus
gaeumannii) impact on Douglas-fir in Oregon was shown
to more strongly relate to winter conditions at wetter,
cooler sites, but summer conditions at drier, warmer sites
(Lee etal. 2013). Similar variation likely occurs between
regions of New Zealand, which incorporate significant
gradients in temperature and moisture variables.
Development of process-based epidemiological models
for P pluvialis, currently underway using data from
controlled environment experiments (McLay et al

2025), may have an advantage over empirical models,
such as those developed here, in allowing predictions
of RNC risk across a range of regions, time periods,
and climate scenarios not yet experienced (Cunniffe &
Gilligan 2020).

Our results have critical implications for the
development of RNC control programmes. The
importance of autumn, more than summer weather
variables in determining annual disease severity
indicates that proactive control activities may require
long-term weather forecasting or frequent monitoring.
Application of cuprous oxide in November, February, or
April/May has been shown to reduce RNC in one trial
series in the Central North Island (Fraser et al. 2022). If
annual RNC emergence could be predicted at the end of
summer (Watt et al. 2024), this would allow application
of effective control in autumn. As forest disease control
operations are logistically demanding and dependent on
international supply chains, delayed disease predictions
will challenge the development of control programmes.

Conclusions

The results reported here show that annual red needle
cast expression is largely explained by autumn weather.
Autumn vapour pressure and soil moisture index were
the most important variables in the Central North Island
and Gisborne Regions, respectively. The importance
of autumn more than summer weather variables in
determining disease contrasts with the findings of
previous studies and indicates that proactive control
activities may require long-term weather forecasting
or frequent monitoring. Variation between regions in
disease history and the importance of different weather
variables suggest that site-specific RNC management
may be required, and that the development of process-
based epidemiological models may be advantageous
over data driven (empirical) models. It is hoped that
the results reported here will contribute to the further
development of an integrated disease management
programme for RNC.
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SUPPLEMENTARY TABLES

TABLE S1: Sites assessed in 2024. Analysis of red needle cast data from 2024 was not undertaken due to the small
number of remaining sites®

Site % of trees with RNC % RNC on worst tree RNC index (%)
6 0 0 0
10 0 0 0
12 0 0 0
16 0 0 0
17 35 20 7
27 95 40 38
32 0 0 0
33 0 0 0
35 0 0 0
35b 0 0 0
36 0 0 0
37 0 0 0
38 0 0 0
40 0 0 0
42 0 0 0
43 0 0 0
44 0 0 0
45 5 35 2
51 25 90 23

aSites 6-38, Central North Island (mean index, 3.5 %); Sites 40-51, Gisborne Region (mean index, 4.2 %).

TABLE S2: Details of known cuprous oxide application to study sites. Red needle cast data for years following application
were removed from analysis (rows coloured red).

Site Year Disease index (%)  Spray history P. pluvialis detection
2014 NA Dec 2014 & Feb 2015
k15

2016 35 Immuno Strip
2017 14

10 2018 0
2019
2020
2021
2022
2023
2014
2015

2016 Immuno Stri

31 2018 8 Dec
2020 0
2021 0
2022 0
2023 NA gPCR
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TABLE S2: continued

Site Year Disease index (%)  Spray history P. pluvialis detection
2014 NA
2015 29 Culture
2016 27
2017 45
32 2018 2 Oct 2018 & Feb 2019
Soo2019 0
2020 1
2021 35 qPCR
2022 3 qPCR & Culture
2023 30
2014 NA
2015 5 Culture
2016 28 Oct
Co2017 60
2018 0 Oct
3+ 2219 1 @R
2020 0
2021 7 gPCR & Culture
2022 1
2023 NA
2014 NA Nov
Soo2015 27
2016 62 Oct
Soo2017 0
2018 0
35b 2019 0
2020 1
2021 4
2022 15 qPCR & Culture
2023 72
2014 NA
2015 19
2016 59 Oct
Soo2017 0
2018 32 qPCR & Culture
36 2019 0 Nov
Soo20200 0
2021 0
2022 54
2023 80
2014 NA
2015 16 Nov 2015 & Feb 2016
Soo2016 14
2017 0
2018 1
37 2019 0
2020 0
2021 0
2022 0 gPCR & Culture
2023 80 gqPCR
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TABLE S3: Details of Phytophthora pluvialis cultures from this study held in Scion’s National Forest Culture Collection

Site ID Year collected NZFS Number(s)

6 2022 NZFS5503

30 2022 NZFS5501

32 2015 NZFS4171, NZFS4173
33 2015 NZFS4268

34 2015 NZFS4172

34 2021 NZFS5389

35 2022 NZFS5502

36 2018 NZFS5181

40 2018 NZFS5182, NZFS5183
41 2018 NZFS5184

42 2020 NZFS5266

43 2018 NZFS5185

45 2018 NZFS5186, NZFS5187
48 2018 NZFS5188, NZFS5189
49 2018 NZFS5190

49 2020 NZFS5263

50 2018 NZFS5191, NZFS5192
50 2020 NZFS5267

51 2018 NZFS5193, NZFS5194




