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Abstract

Background: Red needle cast (RNC) is a foliar disease of radiata pine (Pinus radiata D.Don) in New Zealand caused by 
Phytophthora pluvialis Reeser, W.L.Sutton & E.M.Hansen and, to a lesser extent, Phytophthora kernoviae Brasier, Beales & 
S.A.Kirk. Incidence and severity of RNC vary substantially between years. To investigate the impact of seasonal weather 
variables on this variation, RNC was assessed annually for ten years at radiata pine transects.

Methods: Fifty-three transects were established in 2015 in the Central North Island and Gisborne Region (east coast North 
Island) of New Zealand, with twenty-three monitored until 2024 (surviving harvest). The relationship between seasonal 
weather variables and RNC severity was analysed using two non-parametric statistical approaches: (1) correlation analyses 
(Spearman correlations, rs, where positive values indicate an increase in RNC severity with an increase in the explanatory 
variable); and (2) binary recursive partitioning (with models trained on 85% of observations and tested on the remaining 
15%). 

Results: Disease expressed more consistently, and severity was generally greater, at Gisborne sites. Disease severity peaked 
in 2017 and 2023 in both regions. Autumn (March-May) variables tended to be prevalent amongst predictors of RNC 
severity. Autumn soil moisture index (calculated from cumulative rainfall and evapotranspiration) was the most strongly 
correlated variable for the Gisborne dataset (rs = 0.70) and, along with vapour pressure, were the key partitioning variables 
in the recursive partitioning model. The strongest correlating variable for the Central North Island dataset was autumn 
potential evapotranspiration (rs = -0.46) while the most important variable and first data partition was autumn vapour 
pressure. Model evaluation metrics indicated good performance: R2 values were 0.63 and 0.68 for the Gisborne and Central 
North Island test datasets respectively, and mean absolute errors were 18.1 % and 7.8 % for the respective datasets.

Conclusions: The importance of autumn more than summer weather variables in determining disease expression differs 
from the findings of previous studies and indicates that conditions during periods of exponential epidemic growth may 
be as, or more, important than initial inoculum level in determining RNC severity. Proactive control activities may require 
long-term weather forecasting or frequent monitoring during this season. 
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the longer term (Harrison 1992; Peterson et al. 2015). 
Understanding these within- and between-year patterns 
is essential for effective disease management. Knowledge 
of how seasonal environmental factors affect infection 
(and other pathosystem processes) determines the best 
time to apply a treatment during the year. Forecasting 
those years in which treatment is necessary requires 
an understanding of the way epidemics are influenced 

Introduction 
The frequency and severity of plant disease epidemics 
are strongly influenced by environmental factors, 
such as temperature and precipitation. Within a year, 
weather regulates the behaviour of pathogens and the 
development of disease according to the season (Taylor 
et al. 2003; Manzano et al. 2015; Migliorini et al. 2019). 
Year to year differences in temperature and rainfall 
give rise to episodic variation in disease levels over 
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by temperature and moisture over extended periods 
(Harrison 1992).

Associations with rainfall and temperature have 
been particularly well studied for some forest diseases, 
and this knowledge has enabled the development of 
successful operational control programmes. A leading 
example is Dothistroma needle blight (DNB), a foliage 
disease predominantly of Pinus species caused by 
Dothistroma septosporum (Dorogin) M.Morelet and 
Dothistroma pini Hulbary (Bulman et al. 2016; Woods et 
al. 2016). The strong relationship between the incidence 
and severity of DNB and weather variables has been 
well established globally (Parker 1972; Peterson 1973; 
Gadgil 1974, 1977; Fraser et al. 2016; Woods et al. 2016). 
In a New Zealand study in which plants of radiata pine 
(Pinus radiata D.Don) were exposed weekly in the field, 
infection by D. septosporum occurred mainly between 
November and February (late spring to late summer), 
with some infection extending into April (mid-autumn; 
Gilmour 1981). Foliage became infected during intervals 
when needles remained wet for 10 or more hours at 
temperatures greater than 7 °C. Using extensive field 
data, Watt et al. (2011) found positive associations with 
temperature and relative humidity over the same period, 
as well as with November rainfall. The information 
from these studies explains the effectiveness of current 
management of DNB in forest plantations by the aerial 
application of a copper-based fungicide from late 
October, near the start of the main infection period 
(Gilmour & Noorderhaven 1971; Gilmour et al. 1973; 
Bulman et al. 2004). But severity of DNB also varies 
greatly between years and is closely related to the 
amount of yearly summer rainfall (Bulman et al. 2013). 
This longer-term periodicity leads to a corresponding 
between-year disparity in the total plantation area 
treated for disease, and hence in the overall annual cost 
(Bulman et al. 2004). Internationally, an increase in 
disease severity in parts of the Northern Hemisphere at 
the turn of the century was associated with increases in 
summer precipitation (Woods et al. 2005, 2016).

Research is currently underway to determine the 
influence of weather variables on another, more recent, 
foliage disease in forest plantations in New Zealand 
to assist in the development of a suitable treatment 
procedure. Red needle cast (RNC) of radiata pine and 
Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), 
caused by Phytophthora pluvialis Reeser, W.L.Sutton 
& E.M.Hansen, was first recognised in New Zealand in 
2008 (Dick et al. 2014; Ganley et al. 2014; Hansen et al. 
2015). This pathogen, taxonomically quite distinct from 
the true fungus D. septosporum, is thought to be native to 
the Pacific Northwest region of North America (Brar et 
al. 2018; Tabima et al. 2021), where it causes twig and 
stem cankers on tanoak (Notholithocarpus densiflorus 
(Hook. & Arn.) Manos, C.H. Cannon & S. Oh (Reeser et 
al. 2013) and needle cast on Douglas-fir (Hansen et al. 
2015). Phytophthora pluvialis was recently reported in 
Europe for the first time, on western hemlock (Tsuga 
heterophylla (Raf.) Sarg.) in the United Kingdom (UK), 
causing crown dieback, defoliation, and branch and stem 
cankers on mature trees and mortality of young trees 

(Pérez-Sierra et al. 2022). It has since been reported 
on Douglas-fir in Belgium (Pirronitto et al. 2024), 
Japanese larch (Larix kaempferi (Lamb.) Carrière) in 
the UK (Pérez-Sierra et al. 2024) and stone pine (Pinus  
pinea L.) in New Zealand (McLay et al. 2023). Red needle 
cast of radiata pine in New Zealand is to a lesser extent 
also caused by Phytophthora kernoviae Brasier, Beales & 
S.A.Kirk (Dick et al. 2014).

Much has already been learned about RNC in New 
Zealand pine plantations, including pathogen behaviour 
in relation to seasonal weather factors through the 
year. Symptom expression is observed largely from late 
autumn through winter extending into spring (Fraser 
et al. 2020). In a study using floating pine needles as 
baits, inoculum was detected predominantly in the 
colder months between March and December when 
rainfall is also plentiful (Fraser et al. 2020). In another 
study, plants exposed successively in the field became 
infected between April and September (Hood et al. 
2022). The incidence and severity of RNC has also been 
found to vary between years and across regions in New 
Zealand. Although widespread nationally, certain areas, 
such as the Gisborne Region (referred to as Gisborne 
from here) in the east of the North Island, appear more 
prone to the disease. In parts of the country, dramatic 
outbreaks occur in radiata pine stands after several 
years without symptoms only to be succeeded by a 
further lull following the shedding of infected needles 
and growth of healthy foliage. Understanding how 
regional and temporal variations in weather patterns 
may drive these fluctuations is pertinent to effective 
disease management. Certain incidental empirical 
observations have been informative. Detections of P. 
pluvialis in diagnostics samples were greater in years 
following wetter and milder summers and lower 
following summer droughts (Fraser et al. 2020). 
Several instances have been noted where severe RNC 
expression occurred following summers with above 
average rainfall (Hood, unpublished data). However, the 
strongest evidence for the relationship between summer 
conditions and disease severity comes from recent 
large-scale analyses of disease detection via remote 
sensing in Gisborne (Camarretta et al. 2024; Watt et al. 
2024). Greater relative humidity and rainfall, and lower 
solar radiation and maximum temperatures during 
summer, were significantly related to disease severity 
the following spring (Watt et al. 2024). Aligned to this, 
Fraser et al. (2022) found aerial spraying with cuprous 
oxide to be effective against RNC not only when applied 
during autumn, but also in summer.

These findings are consistent with the recognised 
epidemiology of P. pluvialis and P. kernoviae. The 
production of sporangia on infected needles during 
an epidemic, and similarity in behaviour with other 
airborne Phytophthora species, indicate that P. 
pluvialis, and likely P.  kernoviae, undergo polycyclic 
lifecycles (Hood et al. 2017, 2022, Gόmez-Gallego et al. 
2019, Fraser et al. 2020, McLay et al. 2025). For such 
pathogens, the intensity of seasonal epidemics depends 
upon the level of initial inoculum and the rate of cyclical 
reinfection, both of which are affected by weather 



variables (Van der Plank 1963). Although it is not yet 
known how P.  pluvialis survives between outbreaks, 
it has been suggested that a reduction in the initial 
inoculum – e.g., by unfavourable hot, dry summers – may 
lead to lower disease levels during the following winter 
(Gardner et al. 2015; Fraser et al. 2020; Hood et al. 
2022). Recent controlled trials have demonstrated the 
sensitivity of different life stages of P. pluvialis to warmer 
temperatures, at or above 23°C (McLay et al. 2025), and 
the importance of moisture for successful infection and 
sporulation (McLay et al, unpublished data). However, 
conditions during the subsequent autumn-winter 
exponential phase (the period when infection increases 
rapidly) may also influence the developing epidemic. 
Gόmez-Gallego et al. (2019) found a positive correlation 
at several sites between mean winter relative humidity 
and relative abundance of P.  pluvialis in Douglas-fir 
foliage. Identifying these key factors is relevant to work 
being undertaken to determine the time of year to apply 
treatments and to forecast those years in which this 
should be done. 

To further test the hypothesis that variation in 
initial inoculum abundance, determined by the effect of 
summer weather on pathogen survival, drives between-

year differences in RNC expression, we assessed disease 
incidence and severity in monitoring transects across the 
centre and east coast of the North Island of New Zealand 
annually between 2015 and 2024. The data obtained 
also allowed for an examination of the role of weather 
variables during the exponential phase of epidemics, 
outside of summer months, in explaining between-
year variation in disease expression. This dataset 
complements and expands on that of Watt et al. (2024) 
by incorporating sites across multiple regions over a 
longer period of ground-based monitoring. Disease data 
from ground and satellite (Watt et al. 2024) for nine 
transects enabled a direct comparison of assessment 
methods and conclusions between studies. 

Methods 

Site selection
A series of 53 RNC monitoring transects was established 
in radiata pine stands in the Central North Island (Bay 
of Plenty and Waikato Regions) and Gisborne in October 
2015, during the season when generally greater disease 
expression is observed (Table 1; Figure 1; Figure 2). 
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TABLE 1: Details of red needle cast monitoring sites
Code Transect starta Estimated 

stand ageb
Transect 

length (m)
Elevation 

(m)
Stand type Phytophthora identification

Ppc Pkd Spp.e

Central North Island sites
Sites with data from 2015-2023

6* 5794382N 1877871E Mature 2000 477 Plantation 2022 Q&C 2016
10* 5797563N 1877121E Pre mid 400 460 Plantation 2016
12* 5785948N 1882354E Mature 10 338 Shelterbelt
16* 5779062N 1878801E Post mid 400 299 Plantation
17* 5782450N 1872014E Pre mid 10 549 Shelterbelt
26* 5758494N 1850307E Pre mid 200 380 Plantation 2022 Q 2022 Q
27* 5756736N 1859053E Pre mid 150 440 Plantation 2022 Q, 2023 Q
31* 5744025N 1833207E Post mid 1000 348 Plantation 2023 Q 2016

32* 5713656N 1900047E Pre mid 1000 600 Plantation 2015 C, 2021 Q, 
2022 Q&C

33* 5705798N 1906097E Post mid 1000 697 Plantation 2015 C, 2022 Q
35* 5727592N 1914388E Post mid 700 430 Plantation 2022 Q&C

35b* 5727592N 1914388E Pre mid 700 430 Plantation 2022 Q&C
36* 5728121N 1912292E Pre mid 500 438 Plantation 2018 Q&C
37* 5742421N 1905937E Post mid 600 533 Plantation 2022 Q&C, 2023 Q
38* 5712082N 1891176E Mature 1000 659 Plantation 2023 Q

Sites with data from 2015-2022
30* 5739481N 1827878E Post mid 1000 524 Plantation 2022 Q&C 2016

34* 5707141N 1887661E Pre mid 2000 681 Plantation 2015 C, 2019 Q, 
2021 Q&C

Sites with data from 2015-2021
13* 5762958N 1881973E Post mid 100 389 Plantation
15* 5762958N 1881973E Post mid 1300 399 Plantation
20* 5759720N 1853210E Post mid 800 381 Plantation
28* 5752771N 1862599E Post mid 150 298 Plantation



Fraser et al. New Zealand Journal of Forestry Science (2025) 55:12							                      Page 4

TABLE 1 continued: Details of red needle cast monitoring sites

23 5760234N 1852177E Mature 300 371 Plantation
24 5759444N 1851563E Post mid 500 384 Plantation
25 5759082N 1851525E Mature 500 377 Plantation

Sites with data from 2015-2016
9 5798644N 1876971E Post mid 200 420 Plantation

Sites with data from 2015
11 5789246N 1882085E Post mid 300 400 Shelterbelt
39 5760090N 1864270E Post mid 600 519 Plantation

Gisborne sites
Sites with data from 2015-2023

40* 5733900N 2040910E Post mid 100 544 Shelterbelt 2018 C, 2019 Q, 
2020 Q

2019 
Q 2015

42* 5751246N 2046788E Post mid 200 559 Plantation 2019 Q, 2020 Q&C
43* 5752097N 2046447E Mature 50 555 Plantation 2018 C, 2019 Q
44* 5752488N 2045983E Pre mid 200 575 Plantation 2019 Q

45* 5753675N 2044578E Post mid/
mat. 50 611 Plantation 2018 C, 2020 Q

49* 5751847N 2047393E Post mid 200 521 Plantation
2018 C, 2019 Q, 
2020 Q&C, 2022 

Q, 2023 Q

50* 5683009N 2020012E Pre-mid 500 474 Plantation 2018 C, 2020 
Q&C, 2023 Q

51* 5683667N 2022740E Pre-mid 1000 481 Plantation 2018 C, 2019 Q, 
2020 Q

Sites with data from 2015-2022
41* 5750312N 2046702E Post mid 100 477 Plantation 2018 C, 2019 Q, 

2020 Q
46* 5754891N 2043635E Pre-mid 30 602 Plantation
47* 5754746N 2043809E Pre-mid 150 600 Plantation 2019 Q

48* 5754588N 2044269E Pre-mid/
mid 200 593 Plantation 2018 C

Code Transect starta Estimated 
stand ageb

Transect 
length (m)

Elevation 
(m)

Stand type Phytophthora identification

Ppc Pkd Spp.e

Central North Island sites
Sites with data from 2015-2020

1* 5791106N 1921987E Post mid 200 323 Plantation
8* 5798701N 1876963E Post mid 120 420 Plantation

14* 5763857N 1882184E Post mid 100 407 Plantation
29* 5750926N 1862613E Mature 500 277 Plantation

Sites with data from 2015-2019
7* 5794527N 1877070E Post mid 10 495 Plantation 2015, 2016

Sites with data from 2015-2017
2 5787719N 1919642E Post mid 1000 395 Plantation
3 5788576N 1910849E Mature 2000 340 Plantation

3a 5788122N 1911637E Post mid 1000 341 Plantation
4 5789352N 1910088E Mature 1000 322 Plantation
5 5797234N 1908952E Mature 2000 132 Plantation

18 5759297N 1853421E Mature 200 393 Plantation 2016
19 5759236N 1853187E Post mid 300 3918 Plantation 2015, 2016
21 5760675N 1851959E Mature 200 365 Plantation

22 5760398N 1852003E Mature 300 369 Plantation

*Retained in data analysis; a New Zealand Transverse Mercator (NZTM); b In 2015; c Phytophthora pluvialis. Q, by high-throughput species-
specific qPCR (O’Neill et al. 2018) targeting the ypt1 or cox2 gene region (McDougal et al. 2021; O’Neill et al. 2025); C, by isolation following the 
method outlined in Fraser et al. (2020); d Phytophthora kernoviae. Q, by high-throughput species-specific qPCR (O’Neill et al. 2018) targeting 
the ypt1 gene region (Schena et al. 2006); e Phytophthora spp. Identified by Phytophthora ImmunoStrip (Agdia Inc., Elkhart, Indiana, USA, Cat. 
#92601), except site 10 for which empty sporangia were observed emerging from symptomatic needles in July 2016.
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FIGURE 1: Locations of red needle cast monitoring sites (blue circles). Pink polygons indicate planted forest boundaries 
(Land Use and Carbon Analysis System, Ministry for the Environment, 2020 dataset). Vertical distance between Lats. 38° 
and 39°: 111 km. Credit: Ben Steer.

FIGURE 2: Photos of representative sites, showing variation in red needle cast severity, stand type (e.g. shelterbelt, or 
production plantation), stocking density and stand management.



Sites were chosen to include trees with diseased crowns, 
except that a small number of unaffected green stands in 
the Central North Island were also included for purposes 
of comparison. To facilitate disease assessment, each 
transect consisted of a length of stand edge of between 
10 and 2000 m (mean 550 m) that was visible from a 
public or forest road. Most sites (40) were mid-rotation 
or later (trees approximately 12- to 25-years-old). 
Trees at transects in some older stands were harvested 
before monitoring was completed, leaving 23 sites for 
assessment by the end of the trial in 2023 (monitoring 
periods for all sites are included in Table 1). Data 
collected during 2024 were excluded from the analyses 
because of the small number of remaining sites (Table 
S1). At seven Central North Island sites, copper fungicide 
was aerially applied to control Dothistroma needle blight 
as part of routine forest management during the period 
of this study (or the year prior). Data from these sites for 
the year following application were removed from the 
analyses (Table S2). Only transects with a minimum of 
four observations were retained for data analysis (12 in 
Gisborne, 26 in Central North Island; Table 1).

Disease assessments
Monitoring sites were assessed for RNC levels once 
per year between August and October (late-winter to 
mid-spring), the period when disease expression is 
generally greatest (Dick et al. 2014; Fraser et al. 2020). 
At each assessment, two scores were estimated: (1) 
the percentage of trees along the transect length with 
symptoms of RNC (reddening or browning needles), 
to the nearest 5%; (2) the percentage of crown on the 
worst affected tree with symptoms of RNC, to the nearest 
5%. Assessments were undertaken by three experienced 
Forest Pathologists, one undertaking the scoring from 
2015 to 2019, one from 2017 to 2021, and one from 
2021 to 2024. Assessors calibrated their scores in cross-
over years.

Pathogen identification
Red needle cast symptomology is distinctive from other 
pine needle diseases and disorders in New Zealand. 
However, care was taken to record RNC only in cases 
where there was no reasonable doubt. Samples were 
occasionally collected for laboratory verification as an 
additional precaution. These samples were also used to 
confirm whether P. pluvialis or P. kernoviae was the cause 
of the RNC symptoms. Ad hoc samples with typical RNC 
needle lesions were collected in polythene bags from 
trees within the transects or from nearby pine trees. 
Several different diagnostic methods were applied during 
the course of the study (Table 1), including Phytophthora 
ImmunoStrip® (Agdia, Inc., Elkhart, IN, USA, Cat. 
#92601), isolation following the method outlined in 
Fraser et al. (2020), and/or by high-throughput species-
specific qPCR (O’Neill et al. 2018) targeting the ypt1 or 
cox2 gene regions (McDougal et al. 2021; Schena et al. 
2006; O’Neill et al. 2025). Representative cultures from 
this study were deposited in Scion’s National Forest 
Culture Collection (Table S3).

Weather data
The National Institute of Water and Atmospheric 
Research (NIWA) provides daily meteorological 
estimates for points on a Virtual Climate Station Network 
(VCSN) spatially interpolated using actual data from real 
climate stations located around New Zealand (https://
www.niwa.co.nz/climate/our-services/virtual-climate-
stations). Data for the following variables were extracted 
from the simulated weather station nearest to each site 
for the period from October 2014 to September 2023: 
daily maximum air temperature (°C), daily minimum 
air temperature (°C), daily soil temperature (°C), rain 
accumulation over 24 hr (mm), relative humidity 
(RH) at 9 am (%), solar radiation over 24 hr (MJ/m2), 
mean wind speed over 24 hr at 10 m (m/s), Penman’s 
evapotranspiration index over 24 hr (kg/m2), mean sea 
level pressure at 9 am (hPa), vapour pressure at 9 am 
(hPa), and soil moisture index over 24 hr (mm).

Seasonal averages (spring: September through 
November; summer: December through February; 
autumn: March through May; winter: June through 
August) were computed for each variable (Table 2). 
Number of days with rainfall exceeding 0.3 mm and 
the number of days for which maximum temperature 
exceeded 23°C per season were also computed, as was 
seasonal total rain and maximum wind speed.

Impact of weather on red needle cast – statistical 
analysis 
To elucidate weather variables that may drive RNC 
severity, a disease severity index, computed as the 
product of transect score and worst tree score divided 
by 100 (comparable to a percentage), was evaluated 
using two nonparametric statistical approaches, (1) 
correlation analyses and (2) a data mining technique 
using non-parametric binary recursive partitioning. 

In the former approach, Spearman’s rho, denoted 
rs, which measures the strength of a monotonic (i.e. 
not necessarily linear) relationship between paired 
data, was determined. Those weather variables for 
which the correlation with RNC severity index was 
significant and at least 0.40 (in absolute terms), 
indicating a moderate relationship, were extracted. In 
the latter approach, the binary recursive partitioning 
technique (Breiman 2017, Breiman et al. 1984) which 
successively partitions data into smaller and smaller 
groups, each with similar characteristics, and with each 
split chosen to improve overall model performance, was 
applied. The initial dataset was randomly split into 85% 
training and 15% test data. The recursively partitioned 
regression model, using 10-fold cross-validation to 
determine the optimal cost complexity parameter was 
pruned to avoid overfitting. Pruning followed the cost 
complexity approach to determine the best balance 
between complexity and predictive accuracy. Model 
performance and accuracy metrics were evaluated on 
the test dataset. Mean absolute error (MAE) between 
predicted and actual values and R2 were the chosen 
metrics. The pruned decision trees of the optimal model, 
and variable importance (normalised to a 0 – 1 scale), 
along with the strongest of correlations identified in the 
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correlation analyses, formed the basis for understanding 
relationships of seasonal weather with RNC disease 
severity. 

In addition to analyses by both methods of the whole 
dataset comprising all sites, separate analyses were also 
undertaken for the Gisborne and Central North Island 
datasets, due to the distinctness of the regions in disease 
history and site characteristics.

Statistical analyses were performed using R (R Core 
Team 2022) supplemented by packages ‘tidyverse’ 
(Wickham et al. 2019), ‘yardstick’ (Kuhn et al. 2024a), 
‘parsnip’ (Kuhn et al. 2024b), ‘rsample’ (Frick et al. 
2024), ‘rpart’ (Therneau et al. 2022) and ‘rpart.plot’ 
(Milborrow 2024).

Comparison of ground based and satellite 
assessments
A direct comparison between the ground-based RNC 
index data from this study and the remote sensing RNC 
index of Watt et al. (2024) was undertaken for nine 
transects in Gisborne where data were available for both 
(Transects 41, 42, 45, 46, 47, 48, 49, 50, and 51). Watt 
et al. (2024) used Sentinel-2 satellite imagery to classify 
RNC severity from the difference in the normalised red/
green index (R/Gdiff) between February/March (disease 
free time of year) and September (peak disease). This 
R/Gdiff was calculated for the pixels corresponding with 
the nine transects for all years that satellite imagery was 
available (2019-2023). Pixel values were extracted in a 
GIS environment (QGIS version 3.34.12) using the zonal 

statistics function. For each linear transect, an internal 
10-meter buffer from the forest edge was created and 
then used to extract pixel level information from the 
R/Gdiff layers. The forest boundary layer used to match 
each linear transect was developed in another study 
and closely matched forest edges (Pearse et al. 2025). 
The choice of fixing the width of the transect polygon 
to 10 meters was made to match the resolution of the 
Sentinel-2 imagery used to derive the R/Gdiff layers. 
The ground-based and satellite disease indices were 
compared by linear regression in R. 

Results

General patterns of RNC expression
Red needle cast severity (index) varied among transects, 
regions, and years (Figure 3). Within a year and region, 
RNC index could vary massively among transects, from 
close to zero to 100 % (Figure 3). Apart from 2015, 
average RNC index was consistently greater for the 
transects in Gisborne than for those in the Central North 
Island (see Figure 4). In Gisborne, RNC index was least 
in 2015 (6 %), then increased steadily to 83 % in 2017, 
before declining to 7 % in 2021, followed by a rapid 
increase to 90 % in 2023. In the Central North Island, 
average RNC index was moderate from 2015-2017 (25-
30 %), negligible between 2018 and 2021, and greatest 
in 2023 (43 %). RNC was low (4 %) in both regions in 
2024 (Table S1).

Fraser et al. New Zealand Journal of Forestry Science (2025) 55:12							                      Page 7

Field Units Description 
avMSLP hPa Mean seasonal pressure reduced to Mean Sea Level in hPa AT 9am local day. 
avPET mm Mean seasonal 24-hour Penman Potential Evapotranspiration total in mm FROM 

9am local day. 
avRAIN mm Mean seasonal total 24-hour amount of rain in mm FROM 9am local day. 
nRain Count Number of rain days (>0.3 mm).
avRH % Mean seasonal relative humidity in percent AT 9am local day. 
avSMI mm Mean seasonal 24-hour soil moisture index in mm FROM 9am local day calculated 

from rainfall and evapotranspirationa.
avETMP °C Mean seasonal 10cm earth temperature in °C AT 9am local day. 
avRad MJ/m2 Mean seasonal 24-hour amount of accumulated global solar radiation in MJ/m2 

(Mega Joules per square metre) FROM midnight local day. 
avVP hPa Mean seasonal vapour pressure in hPa AT 9am local day. 
avWIND m/s Mean seasonal mean wind speed in m/s at 10m above ground level over 24 hours 

FROM midnight local day. 
maxWIND m/s Maximum wind speed within a season.
avTMAX °C Mean seasonal maximum 24-hour temperature in °C FROM 9am local day. 
avTMIN °C Mean seasonal minimum 24-hour temperature in °C TO 9am local day. 
nhot Count Number of days with TMAX exceeding 23 °C

TABLE 2: Weather variables utilised in this study, calculated from NIWA’s Virtual Climate Network https://www.niwa.
co.nz/climate/our-services/virtual-climate-stations

a The base value is -150mm (“permanent wilting point”) based on “soil store capacity”. A value of “0” indicates the soil is at “field capacity” 
(amount of water held in the soil after the excess has drained away). A value greater than “0” indicates runoff.
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FIGURE 3: Annual red needle cast index at each monitoring transect in the Central North Island and Gisborne Region. 
Different transects are represented by different coloured lines.

FIGURE 4: Annual averages of regional red needle cast severity (%) and key seasonal weather variables identified 
through correlation and binary recursive partitioning analyses. CNI, Central North Island.



Pathogen identification
Phytophthora pluvialis was confirmed as the dominant 
cause of RNC at the study sites. Across all years, P. 
pluvialis was confirmed present at 11/12 transects in 
Gisborne and 11/15 transects in the Central North Island 
that survived until the end of monitoring (Table 1). 
Phytophthora kernoviae was detected at two transects: 
one in Gisborne in 2019 and another in the Central North 
Island in 2022, both times co-occurring with P. pluvialis. 

Spearman correlations of RNC index and seasonal 
weather variables
With data from all transects, RNC index significantly 
correlated with seven weather variables (|rs| ≥ 0.40): 
four from autumn, two from summer, and one from 
winter (Table 3). RNC index was positively correlated 
to autumn mean vapour pressure, mean minimum 
temperature, mean soil temperature, and number of 
rain days (see also Figure 4). RNC index was negatively 
correlated to summer mean maximum temperature 
(Figure 4) and number of hot days (>23°C), as well as 
winter mean relative humidity. 

When the two regions were analysed separately, 
different weather variables of importance emerged 
compared to the analysis of the full dataset. There was 
no agreement (amongst variables for which the absolute 
value of the correlation was at least 0.40) between the 
Gisborne and Central North Island datasets. A greater 
number of variables significantly correlated with disease 
in Gisborne, and stronger relationships were seen for 
this dataset (Table 3).

For the Gisborne dataset, RNC index significantly 
correlated (|rs| ≥ 0.40) with 11 weather variables: six 
from autumn, three from spring, one from summer, and 
one from winter. The strongest correlation, a positive 
relationship, was with autumn mean soil moisture index 
(0.70; Figure 4). Autumn mean minimum temperature 
(0.57), mean vapour pressure (0.55), number of rain 
days (0.49) and mean relative humidity (0.44) were all 
also positively correlated with RNC index (see also Figure 
4). Autumn maximum wind was negatively correlated 
with disease (-0.51). Spring mean evapotranspiration 

(-0.58) was negatively correlated with RNC index. Spring 
mean relative humidity (0.47) and mean soil moisture 
index (0.41) were positively correlated with RNC index. 
Summer maximum wind (0.53) was positively correlated 
with disease. Winter mean sea level pressure (-0.56) was 
negatively correlated with RNC index.

For the Central North Island dataset, RNC index 
significantly correlated (|rs| ≥ 0.40) with four weather 
variables, the strongest relationship being with autumn 
mean evapotranspiration (-0.46). Two summer variables, 
mean evapotranspiration (-0.40) and mean maximum 
temperature (-0.40; Figure 4), were negatively correlated 
with RNC index. Winter mean vapour pressure was 
negatively correlated with RNC index (-0.42).

Binary recursive partitioning analysis of disease 
index and seasonal weather variables
When data for all transects were analysed by binary 
recursive partitioning, four autumn, four winter, and two 
spring variables made up the top ten most important 
weather factors in explaining RNC index (Figure 5). With 
just three splits, model performance assessed using the 
test dataset was R2 = 0.55, MAE = 17.4 %. Autumn mean 
vapour pressure was by far the most important variable 
(normalised importance = 0.19). Spring mean soil 
temperature, autumn mean soil temperature, autumn 
mean minimum temperature, and spring mean vapour 
pressure followed with similar normalised importance 
measures (0.09 – 0.11). Four winter variables—
maximum wind, mean relative humidity, mean wind, and 
mean sea level pressure — along with autumn maximum 
wind were also amongst the top 10 (normalised variable 
importance 0.04 – 0.07). The most important summer 
variable was mean sea level pressure (11th with a 
normalised importance of 0.04). The model predicted 
moderate RNC index (averaging 54 %) when autumn 
mean vapour pressure was at least 13 hPa and low RNC 
index (13 %) at lower vapour pressures. The greatest 
RNC index (70 %) was associated with autumn mean 
vapour pressure of at least 13 hPa and winter maximum 
wind of less than 8.6 (m/s).
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All transects rs Central North Island rs Gisborne Region rs

avRH_Winter -0.50 avPET_Autumn -0.46 avSMI_Autumn 0.70
avVP_Autumn 0.50 avVP_Winter -0.42 avMSLP_Winter -0.58
avTMIN_Autumn 0.48 avPET_Summer -0.40 avPET_Spring -0.58
avTMAX_Summer -0.44 avTMAX_Summer -0.40 avTMIN_Autumn 0.57
nrain_Autumn 0.44 avVP_Autumn 0.55
nhot_Summer -0.41 maxWIND_Summer 0.53
avETMP_Autumn 0.40 maxWIND_Autumn -0.51

nrain_Autumn 0.49
avRH_Spring 0.47
avRH_Autumn 0.43
avSMI_Spring 0.41 

TABLE 3: Spearman correlations (for which |rs| ≥ 0.40) of red needle cast index and seasonal weather variables. 
Highlighted variables are consistent across datasets. Identical variables share the same colour.
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The binary decision tree for Gisborne transects 
identified two autumnal splits segregating RNC index 
into low, moderate, and high severity (Figure 6). RNC 
index was predicted to be low (averaging 7 %) when 
autumn mean soil moisture index was below -54 mm. 
At wetter levels of mean soil moisture, RNC index was 
predicted to be moderate (32 %) when autumn mean 
vapour pressure was less than 12 hPa, and high (74 %) 

when 12 hPa or greater. Goodness-of-fit statistics for 
the test dataset were R2 = 0.63, and MAE = 18.1 %. As 
identified with correlation analyses, autumn mean soil 
moisture index was the most important variable (with 
a normalised importance of 0.20). Spring mean relative 
humidity (0.19), spring mean evapotranspiration 
(0.15), summer mean relative humidity (0.13), summer 
mean soil moisture index (0.11), and winter mean sea 

FIGURE 5: Binary recursive partitioning analysis, showing decision tree and variable importance, of seasonal weather 
impacts on red needle cast index for all transects. Upper numbers in the shaded polygons give mean RNC index estimates 
(%), lower numbers indicate the percentage of data points.
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level pressure (0.11) followed in terms of importance. 
The remaining variables in the top 10 but with lesser 
importance (< 0.03) were: mean vapour pressure for 
each of the four seasons (autumn > spring > winter > 
summer) and spring number of hot days.

The decision tree for the Central North Island (Figure 
7) had three splits comprising two autumn (mean 
vapour pressure and mean minimum temperature) 

and one winter variable (mean vapour pressure). 
Goodness-of-fit statistics for the test dataset were R2 = 
0.68, and MAE = 7.8 %. RNC index was low (averaging 
10 %) at autumn mean vapour pressures less than 13 
hPa. RNC index was greatest (65 %) when autumn 
vapour pressure was greater than 13 hPa and autumn 
mean minimum temperature less than 9.4°C. The most 
important variable was autumn mean vapour pressure 

FIGURE 6: Binary recursive partitioning analysis of seasonal weather impacts on red needle cast index for transects 
in the Gisborne Region. Upper numbers in the shaded polygons give mean RNC index estimates (%), lower numbers 
indicate the percentage of data points.



with a normalised importance of 0.15 followed by 
autumn mean minimum temperature (0.12) and spring 
mean radiation (0.11). The six variables that followed 
were of similar importance (0.07): autumn mean soil 
temperature, winter mean vapour pressure, winter mean 

sea level pressure, winter mean radiation, winter mean 
wind, and summer mean minimum temperature. Winter 
mean minimum temperature completed the top 10 list 
(0.04). All remaining variables identified as important 
(Figure 7) had lower normalised values (down to 0.02).
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FIGURE 7: Binary recursive partitioning analysis of seasonal weather impacts on red needle cast index for transects 
in the Central North Island (CNI). Upper numbers in the shaded polygons give mean RNC index estimates (%), lower 
numbers indicate the percentage of data points.



Comparison of ground-based and satellite 
assessments
Ground-based and remote sensing RNC estimates for the 
nine transects were significantly positively related (R2 = 
0.54, F(1, 39) = 45.9, p < 0.001; Figure 8). Comparing 
yearly averages, including regional estimates from Watt 
et al. (2024) as well as transect-specific estimates, there 
was good agreement between all three datasets, with the 
greatest disease levels in 2023, intermediary levels in 
2019 and 2022, and the lowest levels in 2020 and 2021 
(Figure 8). 

Discussion
There was significant variation in red needle cast 
incidence and severity within- and among- sites, 
regions, and years. Generally, disease expression was 
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more common and severe at sites in Gisborne than 
the Central North Island. In both regions, mean annual 
RNC oscillated between peaks in 2017 and 2023, with 
lows between 2018 and 2021 (more pronounced in 
the Central North Island). Within sites, RNC expression 
could vary vastly between years, but could also express 
consistently (more so in Gisborne). Phytophthora 
pluvialis was found to be the species most associated 
with RNC, corresponding with the findings of previous 
studies. Results did not unequivocally support the 
hypothesis that summer weather, through its impact 
on pathogen survival and initial inoculum levels, 
drives between-year variation in RNC expression. 
Weather conditions during seasons outside of summer, 
particularly autumn, when exponential epidemic growth 
is more likely to occur, appeared to have a greater impact 
on disease severity. While variables from all seasons 

FIGURE 8: Relationship between red needle cast index from ground scores and remote sensing index for nine sites in the 
Gisborne Region. Ground scores were calculated as transect score × worst tree / 100 (translating to a rough percentage 
canopy affected). The RS index is the differences in Red/Green indices from September and February/March each year 
(R/Gdiff). The table also includes data estimated for the whole region from Watt et al. (2024). Degree of shading in the 
table indicates rank of RNC severity (light grey = low disease, dark grey = severe disease). 



were found to have relationships with RNC expression, 
and the most important variables differed between the 
two regions, autumn and spring variables tended to have 
the strongest correlations with disease and greatest 
importance. When data for all transects were analysed 
together, autumn mean vapour pressure, a measure of 
atmospheric humidity, was the most important variable 
by both analysis methods (positively related to RNC). 
When the Gisborne dataset was analysed separately, 
autumn mean soil moisture index, which incorporates 
current and prior rainfall and evapotranspiration, was 
the most important variable by both analysis methods 
(positively related to RNC). When the Central North 
Island dataset was analysed separately, autumn mean 
vapour pressure (positive relationship) was the most 
important variable by binary recursive partitioning 
analysis, but autumn mean evapotranspiration (negative 
relationship) had the strongest correlation.

While numerous seasonal weather variables have 
potential importance in determining RNC severity, care 
must be taken interpreting the impact of individual 
weather variables on RNC, given their co-variation. 
There was also variation between the two regions in 
weather variable importance, with greater complexity in 
relationships seen in the Central North Island. However, 
relationships between weather variables and RNC were 
generally as expected based on previous knowledge of the 
pathosystem: RNC tended to be greater following wetter 
weather (greater vapour pressure, relative humidity, 
rainfall, soil moisture index; lower evapotranspiration) 
and milder temperature conditions (dependent on 
season, lower maximum temperatures and hot days 
in summer, greater minimum (and soil) temperatures 
in autumn). These relationships correspond with the 
known moisture and temperature requirements of 
the different life stages of P. pluvialis. Needle wetness 
is required for both infection and sporulation (McLay 
et al. unpublished data). Controlled studies have 
also demonstrated the direct impact of temperature 
on several P. pluvialis life stages; with infection and 
sporulation greatest between 10-20°C and restricted at 
or above 23°C (McLay et al. 2025). These relationships 
may explain the contrasting role between seasons of 
maximum and minimum temperature. Generally, in 
the regions studied here, temperatures warm enough 
to limit P. pluvialis are restricted to summer months, 
while in other months, rates of infection and sporulation 
will increase with minimum temperature, if moisture 
is also available. Further, numerous prior field studies 
have demonstrated similar relationships between the 
weather variables identified here and a range of RNC 
metrics. Detection of P. pluvialis inoculum in the same 
two regions was positively related to moisture variables 
and negatively related to maximum temperature (Fraser 
et al. 2020). Infection by P. pluvialis and P. kernoviae 
on trap plants in the Central North Island occurred 
predominantly during periods of the year when 
temperatures, solar radiation, and evapotranspiration 
are lowest, relative humidity is greatest, and rainfall is 
plentiful (Hood et al. 2022). Abundance of P. pluvialis 
in foliage of Douglas-fir was positively related to site 

winter relative humidity (Gόmez-Gallego et al. 2019). 
Annual RNC severity in Gisborne, as measured from 
satellite imagery, was positively related to rainfall and 
relative humidity and negatively related to radiation and 
maximum air temperature in mid- to late-summer (Watt 
et al. 2024). 

Superficially, the finding that autumn vapour 
pressure in the Central North Island and soil moisture 
index in Gisborne were the most important weather 
variables in explaining annual RNC expression contrasts 
to the results of Watt et al. (2024), who posited 
that between-year survival of the pathogen, driven 
by summer conditions, was critical in determining 
annual variation in disease expression. Autumn soil 
moisture index, calculated from cumulative rainfall and 
evapotranspiration, will be directly impacted on by the 
variables identified by Watt et al. (2024), suggesting that 
there is some agreement between the studies. However, 
the findings reported here imply that the cumulative 
effect of weather variables that impact moisture and 
temperature during a longer period from late summer 
through autumn are important, and thus that conditions 
during the exponential epidemic phase play a significant 
role in RNC expression. Soil moisture index was not 
included in the analysis by Watt et al. (2024), so a direct 
comparison of the studies cannot be made. It is important 
to note that although not the most important variables, 
summer relative humidity and soil moisture index for 
the Gisborne dataset, and summer mean minimum 
temperature for the Central North Island dataset were 
also identified as important variables. Likewise, summer 
mean maximum temperature and number of hot days 
(maximum temperature >23°C) for the complete 
dataset, and summer mean maximum temperature and 
evapotranspiration for the Central North Island dataset 
were moderately negatively correlated to RNC severity. 

The two variables identified as most important in 
this study, autumn vapour pressure and soil moisture 
index, most likely impact RNC severity indirectly 
through their co-variation with other weather variables, 
rather than having direct impact on disease processes. 
Vapour pressure is the contribution of water vapour 
to atmospheric pressure. When temperature is held 
constant, an increase of vapour pressure means an 
increase in humidity. Greater humidity will increase 
condensation and dew formation, supporting pathogen 
infection, sporulation, and spread. However, vapour 
pressure in this dataset was strongly positively correlated 
with temperature variables, particularly minimum 
temperature (data not shown). Thus, the positive 
relationship between autumn vapour pressure and RNC 
severity may also be linked to minimum temperatures. 
Greater minimum temperatures, when maximum 
temperatures and moisture availability are not limiting, 
may increase rates of infection and sporulation (McLay 
et al. 2025). Greater minimum temperatures may also 
indicate periods of cloudy weather, in contrast to lower 
minimums associated with clear skies. The relationship 
between RNC severity and soil moisture index, calculated 
from rainfall and evapotranspiration, is easier to explain, 
as this variable likely correlates strongly with pathogen 
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infection, sporulation, and spread risk. Free moisture 
on foliage and moderate temperatures (<23°C) are 
critical for all three of these disease processes (McLay 
et al. 2025; McLay et al. unpublished data). Soil moisture 
index is negatively correlated with temperature 
variables, evapotranspiration, and radiation and 
positively correlated with rainfall and relative humidity. 
The strength of its importance likely results from its 
cumulative nature, representing accrued risk of multiple 
cycles of infection, sporulation, and spread by the 
pathogens during late summer and through autumn, the 
latter season being a time when maximum temperatures 
will no longer be limiting. Aligned to this, the finding 
that spring variables (9-12 months before disease 
assessments) were of importance in several analyses 
indicates that a long cumulation of conditions impacting 
pathogen survival and population growth may be 
playing a role. Similar findings have been reported for 
Phytophthora ramorum Werres, De Cock & Man in’t Veld 
in forests in Oregon, where extent of disease was best 
explained by spring precipitation and extent of disease 
the year prior (Peterson et al. 2015). 

The effects of weather on infection and sporulation 
appear to extend indirectly beyond the current year. 
In this study, despite variation among sites in annual 
trends, disease severity at the regional scale rose steadily 
over several years to the peaks in 2017 and 2023, with 
a corresponding decrease to a trough during the interval 
between (Figure 4). The amount of initial inoculum 
each season may depend on the level of disease during 
the previous year. It is not yet known how P.  pluvialis 
survives between years, but it is likely that favourable 
weather leading to extensive disease results in increased 
primary inoculum in the following year. Repetition 
causes a progressive increase in disease severity over 
several successive years until there is an inevitable 
collapse or decline as most inoculum is lost with the 
shedding of infected foliage from much of the crown.

The trend in RNC expression seen for the sites in 
Gisborne corresponded well with those reported by Watt 
et al. (2024) for the whole region indicating that, despite 
assessing a limited number of sites in this study, the 
results are representative of larger-scale regional trends 
in disease expression. For nine sites, a direct comparison 
between ground and aerial scores was possible allowing 
evaluation of the sensitivity of the remote sensing 
classification. Watt et al. (2024) classified a R/Gdiff lower 
than 200 as healthy, between 200-280 as low severity, 
280-380 as medium severity, and above 380 as high 
severity RNC. Although the ground and aerial scores 
were positively correlated (Figure 8), there was an 
indication that the remote sensing classifications may 
underestimate disease or that the ground-based disease 
index may inflate disease severity, or both. This is not 
unexpected, given disease will likely have to express 
higher in the crown for aerial detection and the ground-
based index, derived from the complete crown depth, 
may inflate disease in cases when small amounts of 
symptoms are present on many trees combined with one 
or a few trees with severe expression. The discrepancy 
between assessment methods may somewhat explain 

the variation between the studies in identifying seasonal 
weather variables of importance. The method of Watt et 
al. (2024) may only be detecting the severest disease, 
which largely occurred in 2022 and 2023, years that 
coincided with extreme mid- to late-summer rainfall 
events. The shorter monitoring period of Watt et al. 
(2024) (5 years) compared to this study (9 years) 
may also partially explain the discrepancy in findings. 
Further ground truthing will be needed to better relate 
the remote sensing index to on-ground severity. This 
may be important for work that aims to enable regional 
scale estimates of RNC growth impacts by determining 
the relationship between remote sensing severity 
classifications and growth impacts. Nonetheless, these 
comparisons provide confidence that either method can 
be used to distinguish years of severe or little disease to 
support identification of environmental drivers.

Improving our understanding of regional and site 
variation in disease expression was not the focus of this 
study, however the results demonstrate that expression 
of RNC was greater and more consistent at sites in 
Gisborne than the Central North Island. This is similar to 
the pattern seen previously for detection of inoculum at a 
small number of sites in each region (Fraser  et al. 2020). 
In that study, inoculum of P. pluvialis was detected in all 
three years at all sites in Gisborne but only in one year 
at a site in the Central North Island. Several factors may 
have contributed to this regional variation, including 
differences in weather, site factors, and management 
operations (see below). All sites in Gisborne were 
located in coastal high elevation plantations (c. 500-600 
m asl) and thus were exposed to more maritime weather 
conditions, with greater seasonal total rain, fewer hot 
days, and warmer mean seasonal minimum temperatures 
(Table 4), that together may have increased pathogen 
survival and disease development rates.

The difference in expression between these regions 
may also be linked to variation in Dothistroma needle 
blight (DNB) presence and management. In the Central 
North Island, low volumes of cuprous oxide are aerially 
applied to control DNB. Aerial surveys are undertaken 
in July and August and plantations under 16 years 
of age with symptomatic foliage percentages above 
certain thresholds are identified for control operations 
that take place in November and February (Bulman et 
al. 2004). The disease is rarely confirmed by ground 
truth, and therefore, it is likely that these applications 
may be providing some control of RNC in these areas. 
In contrast, DNB is less commonly reported in Gisborne, 
where no active control programmes are currently in 
place. Cuprous oxide, applied at the same dose as that 
used for DNB control, is known to reduce RNC incidence 
and severity at an operational level (Fraser  et al. 2022). 
It is possible that these operations are partly responsible 
for the lower levels of RNC observed in the Central North 
Island and they may have impacted our conclusions 
on the role of weather. Application of cuprous oxide 
may reduce P. pluvialis inoculum loads in the region, 
impacting sites that may not have been treated directly. 
During this study, control operations were carried out in 
stands adjacent to our sites in several years and cuprous 
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oxide was directly applied to at least seven study sites 
in the Central North Island (Table S2). Data for the year 
following direct control operations were removed from 
the analysis. Three sites were treated in one year and four 
sites in two years during (or immediately preceding) the 
monitoring window. RNC severity in the year of, and year 
immediately following, spray application varied from 
low to moderate. Two instances of moderate disease 
development the year after application contrasts with the 
results of Fraser et al. (2022), who found that application 
of cuprous oxide in November reduced RNC severity the 
year following. Although this study was not designed to 
test this element, the observation may indicate research 
on efficacy and optimal spray timing for control of RNC 
may be required on a wider range of sites.

Regardless of the cause of regional differences in 
disease expression and weather variables of importance, 
it suggests there may be a need for site- or region-
specific monitoring and management of RNC. There are 
other examples of Phytophthora species being limited 
by different processes in contrasting areas. For example, 
seasonality of P. kernoviae sporulation varies between 
New Zealand and the UK (Fraser et al. 2020). Detection of 
inoculum peaked in the cooler and wetter winter months 
in New Zealand, but in the warmer and drier summer 
months in the UK. Warmer summer temperatures in New 
Zealand, that reached above thresholds for successful 
infection, likely limited the pathogen there, while cooler 
winter temperatures likely limited the pathogen in the 
UK. Similarly, activity of P. ramorum is primarily limited 
by cold winter weather in the UK but by hot summer 
weather in California (Garbelotto & Hayden 2012). At a 
smaller scale, Swiss needle cast (Nothophaeocryptopus 
gaeumannii) impact on Douglas-fir in Oregon was shown 
to more strongly relate to winter conditions at wetter, 
cooler sites, but summer conditions at drier, warmer sites 
(Lee et al. 2013). Similar variation likely occurs between 
regions of New Zealand, which incorporate significant 
gradients in temperature and moisture variables. 
Development of process-based epidemiological models 
for P. pluvialis, currently underway using data from 
controlled environment experiments (McLay et al. 

2025), may have an advantage over empirical models, 
such as those developed here, in allowing predictions 
of RNC risk across a range of regions, time periods, 
and climate scenarios not yet experienced (Cunniffe & 
Gilligan 2020).

Our results have critical implications for the 
development of RNC control programmes. The 
importance of autumn, more than summer weather 
variables in determining annual disease severity 
indicates that proactive control activities may require 
long-term weather forecasting or frequent monitoring. 
Application of cuprous oxide in November, February, or 
April/May has been shown to reduce RNC in one trial 
series in the Central North Island (Fraser et al. 2022). If 
annual RNC emergence could be predicted at the end of 
summer (Watt et al. 2024), this would allow application 
of effective control in autumn. As forest disease control 
operations are logistically demanding and dependent on 
international supply chains, delayed disease predictions 
will challenge the development of control programmes. 

Conclusions
The results reported here show that annual red needle 
cast expression is largely explained by autumn weather. 
Autumn vapour pressure and soil moisture index were 
the most important variables in the Central North Island 
and Gisborne Regions, respectively. The importance 
of autumn more than summer weather variables in 
determining disease contrasts with the findings of 
previous studies and indicates that proactive control 
activities may require long-term weather forecasting 
or frequent monitoring. Variation between regions in 
disease history and the importance of different weather 
variables suggest that site-specific RNC management 
may be required, and that the development of process-
based epidemiological models may be advantageous 
over data driven (empirical) models. It is hoped that 
the results reported here will contribute to the further 
development of an integrated disease management 
programme for RNC.

Fraser et al. New Zealand Journal of Forestry Science (2025) 55:12							                    Page 16

Region Season MSLP PET RAIN RH SMI ETMP RAD TMAX TMIN VP WIND max 
WIND

sum 
RAIN

nrain Nhot

CNI Spring 1016 2.8 4.1 80.9 -18.4 12.1 16.2 16.4 7.0 11.4 3.9 13.1 369 37.3 2.2
Summer 1016 4.2 3.5 77.5 -73.1 18.3 21.1 22.5 11.9 15.3 3.6 13.5 314 25.7 38.7
Autumn 1018 1.8 4.1 87.8 -41.1 13.1 11.5 18.0 8.2 12.8 3.2 11.5 379 30.0 5.8
Winter 1017 0.8 4.9 90.4 1.5 7.0 7.4 12.2 3.5 9.2 3.5 12.0 450 38.4 0.0

Gisborne Spring 1015 3.3 5.0 77.2 -25.6 13.3 17.8 16.5 8.2 11.6 4.1 10.8 450 34.8 1.7
Summer 1015 4.5 3.4 76.4 -82.1 19.7 22.1 21.6 12.8 15.6 3.8 12.9 307 27.1 28.1
Autumn 1018 2.2 4.8 83.4 -34.6 13.8 11.7 18.0 9.9 13.2 3.5 10.5 440 34.8 4.1
Winter 1016 1.3 5.7 83.7 -0.3 7.7 7.9 12.9 5.5 9.4 3.9 10.7 523 40.2 0.0

TABLE 4: Mean seasonal weather variables for the study sites in the two regions. Sites in the Gisborne region were 
in coastal high elevation plantations, exposed to more maritime weather conditions, with greater seasonal total rain, 
fewer hot days, and warmer mean seasonal minimum temperatures (bold).
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SUPPLEMENTARY TABLES

Site % of trees with RNC % RNC on worst tree RNC index (%)
6 0 0 0

10 0 0 0
12 0 0 0
16 0 0 0
17 35 20 7
27 95 40 38
32 0 0 0
33 0 0 0
35 0 0 0

35b 0 0 0
36 0 0 0
37 0 0 0
38 0 0 0
40 0 0 0
42 0 0 0
43 0 0 0
44 0 0 0
45 5 35 2
51 25 90 23

TABLE S1: Sites assessed in 2024. Analysis of red needle cast data from 2024 was not undertaken due to the small 
number of remaining sites a.

a Sites 6-38, Central North Island (mean index, 3.5 %); Sites 40-51, Gisborne Region (mean index, 4.2 %).

TABLE S2: Details of known cuprous oxide application to study sites. Red needle cast data for years following application 
were removed from analysis (rows coloured red).

Site Year Disease index (%) Spray history P. pluvialis detection

10

2014 NA Dec 2014 & Feb 2015
2015 4
2016 35 Immuno Strip
2017 14
2018 0
2019 0
2020 0
2021 0
2022 27
2023 12

31

2014 NA
2015 1
2016 30 Nov Immuno Strip
2017 64
2018 8 Dec
2019 0
2020 0
2021 0
2022 0
2023 NA qPCR
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TABLE S2: continued
Site Year Disease index (%) Spray history P. pluvialis detection

32

2014 NA
2015 29 Culture
2016 27
2017 45
2018 2 Oct 2018 & Feb 2019
2019 0
2020 1
2021 35 qPCR
2022 3 qPCR & Culture
2023 30
2014 NA

34

2015 5 Culture
2016 28 Oct
2017 60
2018 0 Oct
2019 1 qPCR
2020 0
2021 7 qPCR & Culture
2022 1
2023 NA

35b

2014 NA Nov
2015 27
2016 62 Oct
2017 0
2018 0
2019 0
2020 1
2021 4
2022 15 qPCR & Culture
2023 72

36

2014 NA
2015 19
2016 59 Oct
2017 0
2018 32 qPCR & Culture
2019 0 Nov
2020 0
2021 0
2022 54
2023 80

37

2014 NA
2015 16 Nov 2015 & Feb 2016
2016 14
2017 0
2018 1
2019 0
2020 0
2021 0
2022 0 qPCR & Culture
2023 80 qPCR
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TABLE S3: Details of Phytophthora pluvialis cultures from this study held in Scion’s National Forest Culture Collection

Site ID Year collected NZFS Number(s)
6 2022 NZFS5503
30 2022 NZFS5501
32 2015 NZFS4171, NZFS4173
33 2015 NZFS4268
34 2015 NZFS4172
34 2021 NZFS5389
35 2022 NZFS5502
36 2018 NZFS5181
40 2018 NZFS5182, NZFS5183
41 2018 NZFS5184
42 2020 NZFS5266
43 2018 NZFS5185
45 2018 NZFS5186, NZFS5187
48 2018 NZFS5188, NZFS5189
49 2018 NZFS5190
49 2020 NZFS5263
50 2018 NZFS5191, NZFS5192
50 2020 NZFS5267
51 2018 NZFS5193, NZFS5194


