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Abstract

Background: Thermal modification of nondurable Eucalyptus nitens timber was reported to result in excessive checking
and only marginally improved durability when heat treating in steam or atmospheric environments. This study investigated
if oil heat-treatment of E. nitens above 210°C was able to overcome previously reported difficulties.

Methods: Eucalyptus nitens clears were oil heat-treated to 210°C, 220°C and 230°C and assessed for density, stiffness,
strength, colour and decay resistance.

Results: Oil heat-treated E. nitens samples showed mass loss matching the highest durability class when tested against the
brown-rot Rhodonia placenta (Fr.) Niemeld, K.H.Larss. & Schigel and the white-rot Trametes versicolor (L.) Lloyd, matching
Durability Class-2 rated Eucalyptus muelleriana A.W.Howitt heartwood. Oil heat-treated E. nitens samples outperformed
Pinus radiata treated with chromated copper arsenate (CCA) to Hazard Class (H3) grade when tested for the brown-rot
R. placenta. While oil heat-treatment reduced mean stiffness (MoE) and strength (MoR), the resulting material exceeded
characteristic SG8 grade values. No checking was observed in the oil heat-treated E. nitens boards. Letting samples cool
outside the oil bath limited uptake of oil to less than 4 mm in depth. The planed product became darker the higher the oil
heat-treatment temperature.

Conclusions: Oil heat-treatment above 210°C has the potential to refine E. nitens timber, avoiding excessive degrade and

providing decay resistance.
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Introduction

Eucalyptus nitens (H.Deane & Maiden) Maiden is a fast-
growing commercial plantation species, which produces
a light coloured and non-durable timber (Standards
Australia 2022). It is primarily grown for wood fibre.
Use for higher-value solid wood products is possible but
challenges with knots, drying collapse and high growth
strains need to be overcome (Nolan et al. 2005; Washusen
2013). Outdoor timber is a significant market segment
accounting for a fifth to a half of timber consumption in
Australia (Dunn 2011). Technical options to enhance the

durability of non-durable eucalypts have been recently
reviewed (Wood et al. 2020), among them is thermal
modification (Ghani & Lee 2021).

Thermal modification, typically in an oxygen deficient
environment, is a commercial environmentally friendly
process to make wood more durable, darker, and a
more dimensionally stable product at the cost of lower
strength. Comprehensive reviews on thermal wood
modification have been published (Candelier et al. 2016;
Esteves & Pereira 2009; Hill 2006; Hill et al. 2021; Lee et
al. 2018; Zelinka et al. 2022). While the magnitude of the
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thermal treatment effect is species specific, in general,
higher temperature and longer treatment time increase
these effects.

Thermal modification does not provide the same level
of decay resistance as can be achieved with chemical
treatments and is unsuitable for in-ground conditions
(Candelier et al. 2016; Welzbacher & Rapp 2007;
Zelinka et al. 2022). But, thermally modified timber
is commercially produced for non-structural above-
ground applications such as decking or cladding. Higher
temperatures in particular between 200 and 240°C
result in increased decay resistance, when normalised
for mass loss during thermal treatment (i.e. treatment
time) (Candelier et al. 2016). To obtain the same decay
resistance, hardwoods require higher mass loss than
softwoods when normalised for temperature (Chaouch
2011), impacting negatively on mechanical properties.

Several heattreatmentprocesses have been developed
(Hill et al. 2021). The oil heat-treatment process, where
timber is thermally treated in a hot oil bath (Lee et al.
2018), is less common but had been commercialised
(Rapp & Sailer 2001). It was reported to provide a
more consistent appearance and to have less impact on
strength while achieving better durability compared to
gas-phase heat treatment processes (as summarised by
Leeetal.(2018)).Lesssurface checkingwas alsoreported
(Sailer et al. 2000). The process can be conducted with
and without oil impregnation of the wood. Oil does not
enter the interior of the wood during the heat treatment,
but a negative pressure develops inside the cell lumens
if the wood is cooled while submerged in the oil bath,
facilitating impregnation (Dubey et al. 2012; Karlsson et
al. 2011; Rapp & Sailer 2001).

Little and inconsistent information is available on
thermal treatment of E. nitens in atmospheric or steam
environments. To the best of our knowledge, oil heat-
treatment has not been tested for this species. Studies
in New Zealand have reported slightly improved decay
resistance when treated at 210°C but not matching the
performance of timber treated with preservative for
above-ground outdoor use (Sargent et al. 2019; Sargent
& Dunningham 2018). Further, uneconomic levels of
downgrade due to checking were found. Studies on
thermal modification of Chilean and Spanish E. nitens
timber up to 230°C did not report problems with
checking in the products, but focused on investigating
disintegration of the wood tissue by microscopy
(Wentzel, Brischke, et al. 2019; Wentzel, Fleckenstein,
et al. 2019; Wentzel, Gonzalez-Prieto, et al. 2019). The
authors suggested that E. nitens should be suitable for
decking when thermally treated at 200°C, having similar
mechanical properties to commonly used species and
good abrasion resistance. However, decay resistance of
the material was not tested. Thermal modification of
a range of other eucalyptus species has been studied
(Table 1 & Table S1). What can be concluded from the
literature is that E. nitens, in principle, does not behave
differently to other eucalypts when thermally modified.
Checking has not been reported as a major problem
when heat treating eucalypts.
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The purpose of this study was to investigate if oil-heat
treatment at higher temperatures has the potential
to produce an above-ground durable product from
plantation-grown E. nitens in acceptable yields, i.e. with
a limited amount of checking.

Methods

Materials

Four 1.2 m long air-dried and rough sawn E. nitens
boards 28 mm thick and 80 mm wide were cut into
four ~280 mm long samples. The samples appeared
to be heartwood. Each board came from a different
locally grown tree and was supplied by Speciality
Timber Solutions, Sefton, New Zealand. A sample from
each board was used in each of the three temperature
treatments (~210°C, ~220°C and ~230°C) as well as the
control group. Additional, two shorter samples were cut
from each board to determine moisture content (MC)
after equilibration before and after oil heat-treatment.
All samples were conditioned to constant weight at 20°C
and 65% relative humidity (RH).

Oil heat-treatment

Conditioned wood specimens were immersed in recycled
canola oil. Oil heat-treatment (OHT) continued for 3 h
once the sample core reached the desired treatment
temperature of ~210°C, ~220°C or ~230°C, respectively.
The temperature of the oil bath (24 (w) x 30 (1) x 19 (d)
cm) was monitored with an IR thermometer, Amprobe.
The core temperature of the wood samples was
monitored on a sacrificial sample with a temperature
sensor (ATP Thermometer DT-610B) inserted into a 4
mm hole and were sealed with high temperature grease
(Inox-mx6). After treatment, the samples were removed
from the oil bath and allowed to cool and drip off oil on
an incline. The specimens were then reconditioned at
20°C and 65% RH.

Density, mass loss, volumetric shrinkage and
moisture content

Length, width and thickness of the samples was measured
at opposing ends with a calliper and the measurements
were averaged. Samples were weighed. Volume (average
length x average width x average thickness) and density
(volume / mass) were calculated. Moisture content (MC)
was defined as the weight difference of the sampled
before and after drying at 103°C in relation to the dry
weight. Oven-dry mass of the specimens was calculated
from their mass conditioned at 20°C and 65% RH and
the MC of the matching MC sample. Percentage changes
in mass, density, dimensions and volume at 20°C and
65% RH caused by oil heat-treatment were defined as:

OHT effect (%) = (Measurement before OHT -
Measurement after OHT) / Measurement before OHT



Page 3

Altaner et al. New Zealand Journal of Forestry Science (2025) 55:16

000 ‘250 ‘94T ‘8F%€ :(dM) 3ed ('s109d) wnivuvjddp orpydsouny (pro 1804
puLIBPOUDY *90°0 ‘81°0 ‘¥8°0 ‘90°Z :(dM) 10]001s.494 T *(08T+0ZT ‘08T / wea1s 08T + 02T -09~) uosuyo['S'y 1% [[IH'AM
‘021 ‘1013u02) (%) SSO[ ssejy daquild ($09SSY T SSe[d) SIU102132.87 *q 30U oraydsouny 081 (~jooH) pLoporiar viqudioy
9107 'Te 3@ 010JIeZEe] g (F09SSV Z SSe[d) DIopoLi312 ) U0 1I9JJ9 dWIOS PeY JUSWILaI) o £LT0Z WISV weas 0Z1 “wg S1U.103132.193 snadAjponyg
(am)
snauinbups g pue (YA L0]021s.424 ], ISUIESE PISa) UaYM JuawaIInbal
22027 '[e 39 eIdjue) ,21qelnp A1a4, 93 19W pOOM pajeay A[[euriayl H,097 10j 3daoxyq STT NA wnnoep 00Z ‘08T ‘09T (poomiaeay) sipub.ab g
wooaysnu
J01sK0 yuId pue o3eIIYS Se UMOUS PUE S[qIPa a1k [3UNJ 93} :9}0N
LE'SG9°T 'L9Y (M) ultpaog (1 xo ydwny) sowplp snjo.najd
L9Y ‘€69 ‘8501 ‘(M) 19[8ad (19g) sapopa pjnunjua wea)s
0202 'Te3s uofaog (09T ‘0T ‘1013u02) (%) sso[ssejN  €THTA WLSY pajelnies 09T ‘0%T sipupab g
Aedap 03 anp SSO[ JON dTWEeUAP 109)J€ J0U PIP UONEIFIPOW [BULIDY],
6102 '[e30 ozmn| STV ¥¥'6 '¥YZ'8 weals
‘6102 'Te 19 oy[ealte) :(09T ‘0% T ‘Tonu0d) (%) sso ssey 1531 pIald pajeinies 09T ‘0%T sipun.b-g
6972 ‘59T :(4M) 400015404
Y1'Sy ‘62°¢h :(Md) pauvovjd -y
:(09T ‘7013U00) (%) SSO[ SSE]N
€702 Te ¥ oyag AeD9p U0 109JJ0 OU pey Juswean) [eWIdYl, E£I¥Td WLSY weas 091 (soa13 po 1ed4-7) sipuvab g
orydsouny
(4M) “ojodisaaa ] pue (4d) L1020 WLSY / weas 09T + 0€T
L1027 1B 32 SOPON Wwnaqp.3 *H AQ SSO[ SSew U0 SIUdWILa.I} 3eaY JO 1099 (a[qeanoaejun.ao) oN / (Id7T) VINVEl ouaydsouny 091 (p1o s1eak-g7) sipunab g
pOOM1.IeaY 10J 90UEISISAL 9}ULIS) pUE poomdes pue poomiteay
Y107 [e30 uesiaal], poomdes .10j ouelsisal Aedap aaolduil 03 palIads UOIIEIJIPOU [BULIDY], 1S9 peL]  oudydsouny 0£Z ‘STZ 002 ‘(p1o 1ea4-¢7) sipubab g
0T'ST ‘TS€Z TT9€ ‘€€°0S :(¥a) wnaqo.3 'y
€10 'Te 39 ogauoe) (02Z ‘007 ‘081 ‘1013u02) (%) Sso[ sseW 022 '00Z ‘08T
509 ‘I18'€T
0702 'T& 12 03auo[e) ‘S6'87 ‘LSTE ‘6T'EE TEFE :(AM) 1N (71) snauinbups sniodousdd 022 ‘002 (pro 1eak-9) usprey
‘2102 'Te 19 03auofe) (02Z‘00Z 08T ‘09T ‘0% T ‘[0U0d) (%) SSO[SSEW ~ LT0ZA WLSY ueydsouny ‘08T ‘09T ‘0¥T X [[IHM SIpup4b smyd4Ajpong
Pa31S91 10U SEM UDIYM ‘DSh
puno.ig-asoqe 10j [erauajod aaey JYSIW JudawILS.L} [BWLISY], "Snjnqojb g (p1o-1e24-9) ‘IS saprodizoq
810Z [e10o1deuy] payIpouwr A[[eurIay} 10y asn punois-ul 10y AI[IeINS OU PIMOYS 1533 P[AI] ZSZ N4 [ieq pues 012 sn3dAjpong ‘snjnqolb g
(¢uaeq pues)
6002 eznoy, (0SENT 03 Surpaodoe a[qeanp araydsoune
R 0jaL1d-zofezuoy  A194) %80°0-90°0 :(44) (LN ('s1od) wnaqv.y winjjAydoao]y ssof sse]y ETINA ERCIN|| 08T [l1qe’ snjnqo}b snydAjpong
SUOTHpUOd dLIdYdsounye 1opun H,0TZ 03 PoILaY SI9[YEIS IB[[9d
9soy3 a1 pauwrtoyiad D,0TZ~ e paweals sajdwes ‘apeisd z'cH 01 (VD)) sngunj ‘3593
djeuas.te Joddod pajewiodyd Yum pajea) uoq'q vIvIppd snuid yoyew Jou  qe[ SUIUIOS weas 012~
PIP [[13S 9S9YL "D.0T Z 03 pareay sajdures .10j poAIasqo Sem juawaaoldur Aqeanp weas L1
6102 Te 30 yuadtes QWIS J[IYM AM[IqeINp DUBYUD J0U PIP D,G8T I JUSWILAIL) o Ionng, ouRydsouny 01Z 'S8T suaju g
Aedxaq
1591 (D.)
ERLIEREIEN | Suipurg Aipiqeang ssazouad aanjeraduwag, [eLId)e N

srequiny snydATeona paypow A[[ewLIay} Jo A1[Iqelnp uo saipnis jo Arewrwns ;7 4T9dVL



Page 4

Altaner et al. New Zealand Journal of Forestry Science (2025) 55:16

€202 Te 39 3}1m4og

9102Z T8
19 soe( ‘ST0Z €10 Soed

£20Z T8 39 og

9T0¢ Te 9 easheg

9007 'Te 30 Bossad

6102 e 39 011se) 3p

€202 Te 39 3}1mAog

Juelsisal Al10od 03 yueysisal A1ood

AJaA WO1J pasealoul aduelsisal (Ie[[oy] SadIAD]f sauLlal1yn2I3ay ) SNUWLI],
1%°0°08°0 ‘Z6'T ‘0T°Z ‘0C°€ ¥Z'T 13591 1011 ON

0T°0°0Z°0 'L8'C ‘SE'9 ‘8L FT ‘¥0°C 13591 92UaI9)a.1(

(0%2 022 ‘002 ‘08T ‘091 ‘[0u0d) (%) SSO SSE

43b1U.100 "N

'saanjeradwa) JUS WL} JOMO] Je PISEIIP SEM 9IUEBISISAT 9} IULID}
S[IYM ‘@oUBISISaI AULIA) paaosdull H,00Z 2A0QE JUSWILAI} [EULIDY],
1¥'T 'S8T islMauq )

199 ‘67°8 :(ASNYISION) L261U.10D SoULIDIIINSDN

(09T ‘To13U02) (9) SSO[ SSBIA

S9}IULIS) UO }09JJ9 SWOS PeY JUSWIEBIL} [EULIDY],

SO'T ‘¥6°0 ‘8570 ‘Z8°0 :(08T ‘09T ‘0% T ‘[013U02) (%) SSO[ SSE|N

s142.4q )

*90UBISISAT 9}ULIS} U0 309)Ja JuedIudIs A[[edonisnels oN

0T'2°0ZC

‘09°2°0¥'Z ‘¥¥'2 042 :(00Z 08T ‘09T ‘0¥ T ‘02T ‘101U0) (%) SSO[ SSe
s142.4q ")

¥0°0 ‘20°0 ‘0€'T ‘ZS’S 3s91 9dULId)aId

€€°0°€9°0 '89°0 ‘69°T 13591 921041 ON

(092 02z ‘08T ‘101u02) (%) SSOf SSEW

(13318 M) S142.4q Sowl12303d A1)

(4a) [ (SnIn) W % S1eg) stasnipd

saoAw0.4A], 10y d[qeanp pue ‘(gg) ‘1siey d (‘yoerwnyos) nuvaynd p.ioydoiuoy)
10y a[qeanp A1aA ‘(4M) 1 (1) snazop] xad.y 10y a[qeanp ‘(YA\) L0]021s424 ],

10J 9[qeInp A[@elapouwr 03 pasealour sem poomdes jo Aiqein (D051
< paouaLIadxa aABY p[NOYS 31) S9IBLINS NIep AIaa paynsal SuLLiey),
(ST'0°25°0°€L'T1 9L TL°E ‘TH'T :(dg) paudovyd Y

T¥0TL0

‘6S'T ‘8 ‘8% ‘€0°7 :(49) suury ® peaypay (L) snapida] snuijuajoayN
‘TTOLLOETT 89V VhY ‘6T :(49) wnagpaa

‘SP'0°G9°0 06'T ‘L'L ‘SE'9 ‘8ET :(AM) 40]021s494 ],

(0%Z ‘022 ‘00Z ‘081 ‘09T ‘00T) (%) Sso[ sseW

13uny pa1sal [[e 10j 90ueISISal Aedap pajowoad aaoqe

1202 '[9 seed pue ),002 Jo saanjeradwa], 'sajdues s3s9) [[e 10J (948>) MO[ SeM SSO[ SSEJ\

SYEEA LSV

1S9 90101D oU
SPEE WISV B

1593 9ouauayaad

pood

SYEEd WLSV

LSTT LdI

LSTT LdI

LSTT LdI

SYEEA NLSY
ETTNH

EIV1d WLSVY

ajerd
104 J0B3U0D
90BJINS

uagoniN

weals
wea)s

pa3eanieg

orydsouny

oraydsouny

ajerd
104 J0B3U0D
90BJINS

uagoniN

0ST>

0%z ‘022
‘00Z ‘08T ‘091

091

08T ‘09T ‘0¥T

00Z ‘08T
‘09T ‘0%T ‘02T

092 0ZZ ‘08T

0ST>

0%20ZZ ‘002
‘081 ‘09T ‘00T

(poomdes
pIO JB3A-(G) DUDOISISOq

(p1o
saIeak-(z 03 1) p.1opoLi )

(soa13 po 1eak-7) sipunab g

(p1o saea4-81) sipub.ab g

(p1o s1eah-17) sipunab g

(soa13 pjo 1eak-/ woy sdiyo)
aeg LS vjjdydoun snadAjpong
SOMNULIJ],

(poomdes pjo 1ea4-(Sg)
[[9NAA bubo3sIsoq snadApong

(p1o 1ea4-0g) p.1opozid

F.CREN|

9JU9.19)9Y

Surpury

159)
Anpiqeang

$S920.1d

(D.)

aameraduway],

[eLIaIe N

panupguod ;T F1GVL



Altaner et al. New Zealand Journal of Forestry Science (2025) 55:16

Colour

Equilibrated oil heat-treated samples and untreated
controls were planed and subsequently scanned at
600 DPI. Colour parameters were extracted from the
digital images (Plata & Delos Santos 18/05/2022 -
20/05/2022) using the histogram function in Image]
(Schneider etal. 2012), extracting R, G and B mean values
for an oil spot free area of at least 10 Mpixels. RGB mean
values were converted into CIE L, a and b values using an

online converter (http://colormine.org/convert/rgb-to-

lab). The total colour change AE was calculated as:
AE =V( AL% + Aa? + Ab?)

Determination of physical and mechanical properties
After the colour assessments, each sample was ripped
into three 20 mm x 20 mm sticks. The outer two
samples were used for 3-point bending tests, which
were conducted with a universal testing machine using
a support span of 242 mm at a rate of 1.33 mm/min
similar to ASTM (2022).

Assessment of decay resistance

Specimens were cut from the central strip (see above)
of the E. nitens, obtaining test specimens measuring
20 x 20 x 10 mm (with 10 mm along the grain direction)
following (AWPC 2015). Equally dimensioned specimens
were prepared from E. nitens sapwood, Eucalyptus
muelleriana A.W.Howitt heartwood and Pinus radiata
treated with chromated copper arsenate (CCA) to H3.2 grade
(Figures S1, S2 and S3). Specimens were conditioned
at 20°C and 65% RH. Some spare blocks were used to
determine moisture content (MC) for calculating the
theoretical oven-dry mass, in accordance with EN 350-1
and EN 113.

The mass loss test followed EN 350-1 (European
Committee for Standardization 1994) and EN 113
(European Committee for Standardization1996), with
modifications based on ASTM (2005), Australasian
Wood Preservative Committee (2015) and Cookson
(unpublished data). The white-rot Trametes versicolor
(L) Lloyd and the brown-rot Rhodonia placenta (Fr.)
Niemeld, K.H.Larss. & Schigel were selected as decay
fungi. Test blocks were sterilised using ethylene oxide gas
before being exposed to the decay fungi growing on malt
extract agar. The sterilised specimens were positioned
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with the end-grain on a sterilised stainless-steel mesh
placed on top of the established mycelium. The trays
were incubated at 25°C and 75% RH in a growth cabinet.
The samples were removed after 12 weeks, gently wiped
to remove excess surface mycelium, and oven-dried
at 103°C until they reached a constant mass. The final
weight was recorded to determine mass loss (ML):

ML (%) = (M, - M,)/ M,) x 100

Where M, and M, are the initial (theoretical oven-
dry mass) and final mass of the sample, respectively.
Sapwood specimens of E. nitens served as reference
species to verify the vitality of the fungal cultures.

Data analysis

Statistical tests (ANOVA, Tukey HSD) were performed
in R (R Core Team 2022). Non-significant variables
(p > 0.05) were removed from the models. Replicate
measurements per sample were treated as nested within
each board.

Results and Discussion

The average temperatures in the core of the wood
samples during the treatment time was 213, 223 and
235°C, respectively (Table 2). Treatment time at the
desired temperature was between 3 and 3.5 hours (Table
2), with an additional heating-up time varying between
50 and 70 minutes (Figures S4, S5 and S6). This was
at the upper end of typical thermal timber treatment
temperatures (160-240°C) (Hill et al. 2021; Zelinka et al.
2022).

TABLE 2: Conditions for oil heat-treatment of E. nitens

Treatment Temperature Treatment Oilloss

(Y] time (h)  (g)
Set1 213 3 ~128
Set 2 223 3.5 ~126
Set 3 235 3 ~194

Increasing the temperature of the oil heat-treatment
of the E. nitens boards from 213°C to 235°C increased
the loss of cell wall material from 6.5% to 13.1%

TABLE 3: Mean properties for oil heat-treated E. nitens (standard deviation in parenthesis). Superscript letters indicate
TukeyHSD 95% confidence levels. nd = not determinable; OD: oven dry. [5*" percentile MoR values in brackets]

n Control OHT at~210°C  OHT at~220°C OHT at ~230°C

MC,.c, s (%) 4 11.8(0.3) 4.0 (nd) 4.3 (nd) 4.3 (nd)

Density, ., ..., (kg/m?) 4 593.6 (21.9)" 564.7 (27.7)" 535.8 (24.7)° 522.7 (23.4)°

Mass loss,, (%) 4 nd 6.5 (0.3)° 10.9 (0.4)* 13.1 (0.4)¢

Volume loss, ... ..., (%) 4 nd 6.0 (1.3)° 6.9 (1.9)® 8.3 (1.3)°

MoE (GPa) 8 11.6(0.6)  11.2(L6) 10.9 (1.7)* 9.3 (1.7)°

MoR (MPa) 8 1062 (9.6)  64.1(18.2) 56.0 (22.7)° 439 (18.2)
[90.5] [40.2] [28.3] [23.8]
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(Table 3). The oil heat-treatment had a profound effect
on the equilibrium moisture content at 65% relative
humidity and 20°C, reducing form 11.8% for the
untreated E. nitens controls to ~4% for the oil heat-
treated samples (Table 3). The reduced equilibrium
moisture content of the oil heat-treated samples was
consistent with the reduced dimensions, expressed
as volume loss in Table 3. The reduced dimensions
imply the need to cut larger boards from the green
logs to reach a target product dimension compared
to conventional sawn timber products. Oil heat-
treatment significantly reduced the density of the
E. nitens boards at equilibrium conditions (65% relative
humidity and 20°C) from 590 kg/m? for the control to
520 kg/m3 when oil heat-treated at 230°C (Table 3).
While oil heat-treatment did roughly halve the strength
(MoR) ofthe timber, stiffness (MoE) was only significantly
affected by the most sever thermal treatment, reducing
it by ~20%. Except for MoE, more variation was
associated with thermal treatment temperature than
between boards. All observed changes were consistent
with literature on thermal timber treatment (Hill 2006;
Lee et al. 2018; Zelinka et al. 2022). The mean stiffness
(MoE 9.3 to 11.2 GPa) and 5* percentile strength (MoR
23.8 to 40.2 MPa) of the oil heat-treated E. nitens (Table
3) compared favourably with characteristic design values
for SG 8 structural timber ( MoE 8 GPa; MoR 14 MPa)
(Standards New Zealand & Standards Australia 2022),
which is recommended for decking material (BRANZ
2013). However, two things need to be noted. Firstly, in
contrast to typical SG8 timber the samples in this study
were clear wood without defects for which higher values
are to be expected. And secondly, the characteristic
strength for SG8 is based on the 5% percentile rather
than the mean (Standards New Zealand 2004), which
were between 23.8 and 40.2 MPa for the oil heat-treated
timber (Table 3).

Colour and checking

The oil heat-treatment had profound effects on the
colour of the E. nitens boards (Figure S7). Boards became
significantly darker than the control and the samples
treated at 210°C were lighter coloured than those treated
at higher temperature (Table 4). Oil heat-treatment
temperature also significantly increased the yellowness
(CIE b) of the boards. While the redness (CIE a) of the
boards was significantly different between the controls
and the oil heat-treated samples, the effect differed
in sign depending on the treatment temperature. The
overall colour change was also significantly different
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between all oil heat-treatment temperatures. These
colour changes were as expected for heat treated wood
(Griebeler, Tondi, etal. 2018; Lee et al. 2018). It should be
noted that colour variation between trees is significant
and under genetic control (Vanclay et al. 2008). Heat
treatment reduces colour variation (Griebeler, de Matos,
et al. 2018), which can be improved further by pre-
grading (Griebeler, Tondj, et al. 2018).

Removing the wood from the hot oil bath for cooling
prevents larger uptake of oil into the material (Dubey et
al. 2012). However, oil penetrated into the surface layers
ofthe E. nitensboards. Due to different board dimensions,
planing to the targeted 20 mm thickness removed
between 8 and 4.5 mm of material from one rough sawn
surface. For some boards this was not enough to remove
all oil-soaked material and the samples showed spots
of oil stain (Figure S7). Oil-soaked material might affect
appearance when used with clear finishes. If the product
is stained, as is commonly recommended for decking,
this should become invisible. Indeed commercially heat
treated, but not oil heat-treated, decking is sold with oil
coating already applied. The remaining trace amounts
should not significantly impact absorption of an oil
coating. Planing has been recommended of oil heat-
treated timber before gluing (Rapp & Sailer 2001). Good
results were obtained for coating oil heat-treated timber
with certain systems (Lee et al. 2018; Rapp & Sailer
2001).

In contrast to previous reports that thermal
modification of E. nitens is associated with extensive
checking (Sargent 2019; Sargent etal. 2017), no checking
was observed in this study (Figure S7).

Decay resistance

After 12 weeks of exposure to the white-rot T. versicolor,
control samples of untreated E. nitens sapwood lost
over 50% of their mass, indicating that the test was
valid (Table 5). Oil heat-treated samples lost less than
2% of their mass, performing as well as H3 CCA-treated
P, radiata and E. muelleriana heartwood which is listed
having an above-ground Durability Class 2 (Bootle
2005).

The brown-rot R. placenta caused less than 3% mass
loss in the eucalyptus specimens, while the H3 CCA-
treated P. radiata lost 15% after 12 weeks exposure
(Table 5). The more severe degradation of H3 CCA-
treated P. radiata compared to the hardwood samples
was consistent with the known preference of this fungus
for softwoods (European Committee for Standardization
1996).

TABLE 4: Mean (n = 4) colour characteristics for oil heat-treated E. nitens (standard deviation in parenthesis). Superscript
letters indicate TukeyHSD 95% confidence levels. nd = not determinable, AE overall colour change.

Parameter Control OHT at ~210°C OHT at ~220°C OHT at ~230°C
CIE L (brightness) 76.9 (0.6)* 25.1 (0.9 20.3 (0.5)¢ 18.7 (1.6)°

CIE a (red-green) 3.3(0.2)° 3.8(0.1)2 2.5 (0.1)° 1.9 (0.2)¢

CIE b (yellow-blue) 17.0 (0.7)2 12.3 (0.2)* 9.0 (0.4)° 7.4 (0.8)¢

AE (overall colour change) nd 52.0 (1.0)2 57.1 (0.4)° 59.0 (2.0)®
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TABLE 5: Mean mass loss (%) by the white rot T. versicolor and the brown rot R. placenta of oil heat-treated E. nitens
and selected controls (standard deviation in parenthesis). Superscript letters indicate TukeyHSD 95% confidence levels.
n: number of samples, HW: heartwood; SW: sapwood.; H3 CCA: treated with chromated copper arsenate to H3 grade.

E. nitens E. nitens E. nitens E. nitens E. mulleriana E. nitens H3 CCA
HW HW HW HW HW SW Pinus radiata
OHT Control OHT ~210°C OHT ~220°C OHT ~230°C

n 20 20 20 20 5 5 5

Massloss (%) 27.7 (11.5)* 1.7 (1.5)® 0.6 (1.7)° 0.8 (2.0)° 0.1 (0.3)® 62 (17.5)c 0.1 (0.3)®

T. versicolor

Mass loss (%) 0.9 (2.6)? 0.9 (2.5)° 1.1 (2.2)* 0.7 (2.1)° -0.4 (0.8)* 1.8(3.4)* 14.9(12.9)°

R. placenta

No statistical difference in massloss between the three Acknowledgements

oil-heat treatment temperatures was found for either
fungus (Table 5). This was expected as the mildest oil-
heat treatment at 213°C already rendered the material
indigestible for the tested fungi. This observation was
also consistent with literature, reporting best durability
of eucalypt timbers when treated above 200°C (Carvalho
etal. 2019; Juizo etal. 2019; Paes etal. 2021). Specifically,
mass loss of less than 2% against the test fungi
T versicolor and R. placenta was reported for eucalypt
heat treated timber at or above 200°C (Cantera et al.
2022; Paes et al. 2021). Higher mass losses against the
two fungi were reported for eucalypt timber heat treated
at 160°C (Brito et al. 2023; Modes et al. 2017).

Durability classification according to a standard
such as EN 113 or ASTM 2017 requires testing against
more fungi. However, for the two tested fungi, oil heat-
treated E. nitens samples were at least on par with H3
CCA treated P, radiata and matched that of above-ground
durable E. muelleriana heartwood.

Conclusions

These findings indicate potential to use oil-heat treated
E. nitens for non-structural, above-ground applications
such as decking and cladding. Previous reports that
heat treating E. nitens results in excessive checking
could not be confirmed. Decay resistance against T.
versicolor and R. placenta were at least on par with H3
treated Pinus radiata and above-ground Class 2 durable
E. muelleriana heartwood. It should be noted that mean
MoE and mean MoR exceed characteristic values for
SG8. Further investigation will be needed to determine
if oil heat-treated E. nitens is an economically viable
process. However, the recent commissioning of an oil
heat-treatment plant in Sefton, New Zealand, indicates a
favourable business case.
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Supplemental Information
TABLE S1: Summary of studies on physical properties of thermally modified eucalyptus timbers.
Material Temperature (°C)  Process Finding Reference
E. nitens (19 160, 180, 200,210, Atmospheric No difference in mechanical and anatomical Wentzel,
year-old) 220,230 properties between the processes. But steam processBrischke et al.
150,160,170 Steam caused stronger modification of wood chemistry. 2019; Wentzel,
Indication that chemical changes were associated  Fleckenstein et
with brittle wood al. 2019
E. nitens (16 & 185,200, 215 Atmospheric Similar high abrasion resistance as commonly used Wentzel,
19 year-old) species Gonzalez-Prieto
etal. 2019
E. nitens 160, 185, 210 Atmospheric After 7 months exposure to sunlight, the colour Sargent et al.
173 Steam of the heat modified boards and the control were 2017; Sargent
~210 Steam similar. Thermal modification did not significantly & Dunningham
change MoE but halved MoR at 210°C. Heat 2018
treatment in atmospheric conditions caused
unacceptable levels of checking. Less checking in
steamed wood
E. nitens, 200 Hot press Loss in density and mechanical performance due Balasso et al.
Tasmanian oak to thermal treatment can be counteracted by 2020
(veneers) densification
E. grandis 160 Saturated steam Anisotropy of wood not affected by heat treatment Bonfatti Janior
decking etal. 2022
E. grandis 140, 180, 220 Vacuum More changes happen to wood when treated under de Oliveira
140, 180, 220 Nitrogen nitrogen compared to vacuum Aratjo et al.
140, 180, 220 Vacuum + 2012; Soratto et
nitrogen al. 2020
E. grandis 180 Atmospheric Thermal modification increased calorific value; Calonego et al.
(30year-old) effect of thermal modification more pronounced for 2014; Calonego
mature wood compared to juvenile wood. etal. 2016
E.grandis (25 160 Atmospheric Better modification was achieved by sequential Modes et al.
year old) 130 + 160 Steam / steam and atmospheric treatments compared to 2013
Atmospheric simple atmospheric treatment
E. grandis (23 180, 200, 215,230  Atmospheric Temperature as well as treatment duration promote Garcia et al.
year-old) physical changes in the wood 2012
E. grandis 120,150,180 Atmospheric Mature wood lost more mass, but heat treatments  Bal & Bektas
(20 year-old, affected mechanical propertied and shrinkage more 2012, 2013
juvenile and for juvenile wood
mature wood)
E. grandis (19 140, 160, 180 Saturated steam No quantitative changes in wood anatomy were Batista et al.
year-old) detected in any cell type. Radial swelling reduced 2015; Batista et
less than tangential and volumetric swelling al. 2018
E. grandis 140, 160,180,200 Nitrogen Planing quality improved with heat treatment de Moura &
(18 year-old temperature, while sanded surfaces became rougher. Brito 2011; de
sapwood) Adhesion of coating decreased above 160°C. 160°C Moura et al.

E. grandis (18
year-old)
E. grandis (15
year-old)

140, 160, 180

140,170, 200, 230

Saturated steam

Atmospheric

yielded optimum colour stability and colour change 2011; de Moura

increased from 180°C etal. 2013
Colour becomes more consistent when treated at Griebeler et al.
180°C 2018a

Temperature was more effective than time to change Zanuncio, Farias

the colour and chemical composition of timber. etal. 2014;

Random sampling is appropriate for evaluating heat Zanuncio, Motta

treated wood as parameters had a low coefficient of etal. 2014;

variation Zanuncio, Nobre
etal. 2014
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TABLE S1: continued
Material Temperature (°C) Process Finding Reference
E. grandis (9 & 155,165,175,185 Steam Regression model to predict mechanical properties Oliveira et al.
10 year-old) from thermal treatment temperature. Weak 2021; Oliveira et
correlation for toughness al. 2022
E. grandis 160 Steam Comparable to thermally modified 15-year-old teak Brito etal. 2023
(7 year old
trees)
E.grandis (17 180,200, 220,240 Atmospheric = Treatment duration influenced weight loss, while theDe Cademartori
year-old) temperature influenced all studied properties. More etal. 2012; de
significant modifications with treatments above Cademartori et
200°C, where treatment duration became also more al. 2013
relevant
E.grandis (17 180,200, 220,240 Atmospheric  Pre-steaming does not affect wood properties de Cademartori
year-old) 127 + (180, 200, 220, when subsequently treated above 200°C. Strength  etal. 2015
240) Steam + remained acceptable even at high temperature.
Atmospheric
E. grandis x 150,170, 190,200, Palm oil While treatment temperature had a larger effect on Cao et al. 2023
E. urophylla 210 dimensional stability, treatment duration and the
(clone GLGU9) interaction between temperature and treatment
duration were still significant (P = 0.01)
E.grandisx E. 180, 200, 220 Nitrogen Numerical model to monitor heat treatment process Zhao et al. 2017
urophylla from temperature measurements for quality control
E.grandisx E. 165,185, 205 Atmospheric  Colour of teak could be matched at 185°C Luetal. 2022
urophylla (7
year-old)
E. urograndis 140, 160, 180, 200, Atmospheric  No effect of clone on tested properties of heat- Barreiros et al.
clones (8.5 220 treated timber 2023
year-old)
E. grandis x 120,180 Atmospheric ~ Atmospheric heat treatment resulted in most Batista et al.
E. urophylla Steam consistent material properties, suggesting easier 2022
(9 year-old quality control
clones)
E. grandis x 160, 180,200,220 Steam Heat treatment decreased crystallinity of cellulose Cheng et al.
E. urophylla (10 and increased distance between the crystal 2017
year-old) planes. While the amount of carbonyl groups
was unaffected by heat treatment methyl groups
decreased with temperature. Aromatic groups
showed a non-liner behaviour with temperature.
E. grandis x 185,200 Atmospheric  Heat treated decking changed colour less due to Andrade et al.
E. urophylla weathering than untreated controls 2024
(14 year-old
clones)
E.grandis, E. 200 Atmospheric  Heat treated wood met mechanical wear Juizo et al. 2021
urophylla and requirements for flooring
E. grandis x
E. urophylla
(10 year-old
clones)
E. urophylla (8 150,170, 190 Atmospheric  Heat treatment at 150°C improved dimensional Yang & Jin 2021
year-old) stability and colour uniformity but without
reducing mechanical strength
E. globulus 180 Atmospheric  Little difference in flat sawn and quarter sawn Santos 2000

bending strength
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TABLE S1: continued
Material Temperature (°C) Process Finding Reference
E. globulus 190, 200, 210 Steam Improvements in dimensional stability can be Esteves et al.
190 Atmospheric  obtained for a 3-4% mass loss without impairing ~ 2007; Esteves,
mechanical performance. With increasing Graca, et al.
temperature, hemicelluloses degraded first 2008
(arabinose and xylose), lignin at a slower rate
and cellulose was only slightly affected. Almost
all original extractives disappeared, and new
compounds formed. The atmospheric process
resulted in more oxidized extractives
E. globulus 190, 210 Steam Wood colour changed more in atmospheric than Esteves, Velez
170,180 Atmospheric ~ steam heat treatment Marques, et al.
2008; Esteves et
al. 2013
E. globulus (25 140, 160,180,200, Atmospheric  Pre-grading for colour can produce a more Griebeler et al.
to 35 years 220 homogeneous product after thermal treatment 2018
old)
E. pellita (25 to 140, 160, 180, 200, Vacuum Heat treatment temperature reduced hydrogen Sunetal. 2017
35 year-old) 220,240 and increased carbon content. Hemicellulose
degradation and lignin condensation were
observed. Equilibrium moisture content and
sorption hysteresis decreased with treatment
temperature
E. pellita (8 170, 200 Atmospheric  Removal of polar extractives did not change the Zanuncio et al.
year- old) colour of the thermally treated timber 2016
E. 120,150,180 Atmospheric  Radial Janka hardness reduced by up to 45%. Unsal et al. 2003
camaldulensis Tangential and end-grain hardness were less
affected
E. cloeziana 180, 200,220,240 Atmospheric  Pre-steaming does not affect wood properties de Cademartori
(17 year-old, 127 + (180, 200, when subsequently treated above 200°C. Strength  etal. 2013; de
fast-growth) 220, 240) Steam + remained acceptable even at high temperature Cademartori et
Atmospheric al. 2014
E. cloeziana, 180, 200 Atmospheric  Pre-freezing decreased mass loss and chemical Missio et al.
E.grandis (21 -22 + (180, 200) changes, but did not affect brittleness and strength 2015; Missio
year-old) of thermally modified timber etal. 2016; de
Avila Delucis,
Beltrame, et
al. 2019; de
Avila Delucis,
Machado, et al.
2019; Costa et
al. 2020
E.saligna (17 180, 200,220,240 Atmospheric  Pre-steaming did not affect wood properties de Cademartori
year-old) 127 + (180, 200, when subsequently treated above 200°C. Strength  etal. 2015
220, 240) Steam + remained acceptable even at high temperature

E. saligna (25
year-old)

Corymbia
citriodora (18
year-old)

E. grandis,
E. saligna,
Corymbia
citriodora
(18year-old)

E. bosistoana
(50 year-old

120, 140, 160, 180

160, 180, 200, 220,
240

180, 220
220, 250, 280

<150

Atmospheric

Atmospheric

Nitrogen

Air
Nitrogen

Surface contact
hot plate

Increased heat treatment temperature facilitated
colour homogenisation

Heat treatment reduced extractives from 17.9% in
the control to 3.5% at 240°C

Slope of sorption curves not affected by heat
treatment

Surface charring improved moisture related
characteristics but reduced MoE, MoR, compression

Pincelli et al.
2012

Silva et al. 2013

Almeida et al.
2009

Ibanez et al.
2023; Tuncer et

sapwood)

strength parallel to the grain and hardness

al. 2024
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FIGURE S2: Mass loss of oil-heat treated E. nitens and control samples after 12-week exposure to the white-rot fungus
Trametes versicolor
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FIGURE S3: Mass loss of oil-heat treated E. nitens and control samples after 12-week exposure to the brown-rot fungus
Rhodonia placenta
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FIGURE S4: Monitored temperature
and mass loss during oil heat
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FIGURE S7: From left to right,
E. nitens boards 1, 2, 3 and 4.

A: control;

B: oil heat treated at ~210°C;
C: oil heat treated at ~220°C;

D: oil heat treated at ~230°C.




